Your browser doesn't support javascript.
loading
Topological Crystalline Insulator in a New Bi Semiconducting Phase.
Munoz, F; Vergniory, M G; Rauch, T; Henk, J; Chulkov, E V; Mertig, I; Botti, S; Marques, M A L; Romero, A H.
Afiliação
  • Munoz F; Departamento de Física, Facultad de Ciencias, Universidad de Chile &Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Santiago, Chile.
  • Vergniory MG; Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain.
  • Rauch T; Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany.
  • Henk J; Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany.
  • Chulkov EV; Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain.
  • Mertig I; Tomsk State University, Tomsk, Russia.
  • Botti S; Departamento de Fisica de materiales, Facultad de Ciencias Quimicas, UPV/EHU and Centro de Fisica de Materiales, Centro Mixto CSIC-UPV/EHU, San Sebastian, Spain.
  • Marques MA; St. Petersburg State University, St. Petersburg, Russia.
  • Romero AH; Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle, Germany.
Sci Rep ; 6: 21790, 2016 Feb 24.
Article em En | MEDLINE | ID: mdl-26905601
Topological crystalline insulators are a type of topological insulators whose topological surface states are protected by a crystal symmetry, thus the surface gap can be tuned by applying strain or an electric field. In this paper we predict by means of ab initio calculations a new phase of Bi which is a topological crystalline insulator characterized by a mirror Chern number nM = -2, but not a strong topological insulator. This system presents an exceptional property: at the (001) surface its Dirac cones are pinned at the surface high-symmetry points. As a consequence they are also protected by time-reversal symmetry and can survive against weak disorder even if in-plane mirror symmetry is broken at the surface. Taking advantage of this dual protection, we present a strategy to tune the band-gap based on a topological phase transition unique to this system. Since the spin-texture of these topological surface states reduces the back-scattering in carrier transport, this effective band-engineering is expected to be suitable for electronic and optoelectronic devices with reduced dissipation.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Chile

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Sci Rep Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Chile