Your browser doesn't support javascript.
loading
Chromosome intermingling-the physical basis of chromosome organization in differentiated cells.
Maharana, Shovamayee; Iyer, K Venkatesan; Jain, Nikhil; Nagarajan, Mallika; Wang, Yejun; Shivashankar, G V.
Afiliação
  • Maharana S; Mechanobiology Institute, National University of Singapore, Singapore.
  • Iyer KV; Mechanobiology Institute, National University of Singapore, Singapore.
  • Jain N; Mechanobiology Institute, National University of Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore.
  • Nagarajan M; Mechanobiology Institute, National University of Singapore, Singapore.
  • Wang Y; Mechanobiology Institute, National University of Singapore, Singapore.
  • Shivashankar GV; Mechanobiology Institute, National University of Singapore, Singapore Department of Biological Sciences, National University of Singapore, Singapore shiva.gvs@gmail.com.
Nucleic Acids Res ; 44(11): 5148-60, 2016 06 20.
Article em En | MEDLINE | ID: mdl-26939888
ABSTRACT
Chromosome territories (CTs) in higher eukaryotes occupy tissue-specific non-random three-dimensional positions in the interphase nucleus. To understand the mechanisms underlying CT organization, we mapped CT position and transcriptional changes in undifferentiated embryonic stem (ES) cells, during early onset of mouse ES cell differentiation and in terminally differentiated NIH3T3 cells. We found chromosome intermingling volume to be a reliable CT surface property, which can be used to define CT organization. Our results show a correlation between the transcriptional activity of chromosomes and heterologous chromosome intermingling volumes during differentiation. Furthermore, these regions were enriched in active RNA polymerase and other histone modifications in the differentiated states. These findings suggest a correlation between the evolution of transcription program in modifying CT architecture in undifferentiated stem cells. This leads to the formation of functional CT surfaces, which then interact to define the three-dimensional CT organization during differentiation.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Diferenciação Celular / Cromossomos / Interfase Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Singapura

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cromatina / Diferenciação Celular / Cromossomos / Interfase Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Nucleic Acids Res Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Singapura