Your browser doesn't support javascript.
loading
Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams.
Lv, Lingxiao; Zhang, Panpan; Cheng, Huhu; Zhao, Yang; Zhang, Zhipan; Shi, Gaoquan; Qu, Liangti.
Afiliação
  • Lv L; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Zhang P; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Cheng H; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Zhao Y; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Zhang Z; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P. R. China.
  • Shi G; Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.
  • Qu L; Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Cluster Science, Ministry of Education, School of Chemistry, Beijing Institute of Technology, Beijing, 100081, P. R. China.
Small ; 12(24): 3229-34, 2016 Jun.
Article em En | MEDLINE | ID: mdl-27171551
ABSTRACT
Solution-processed ultraelastic graphene foams are prepared via a convenient air-bubble-promoted synthesis. These foams can dissipate external compression through the ordered interconnecting graphene network between the bubbles without causing a local fracture and thus reliably show compressive stress of 5.4 MPa at a very high strain of 99%, setting a new benchmark for solution-processed graphene foams.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Small Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article