Your browser doesn't support javascript.
loading
Modeling methodology for the accurate and prompt prediction of symptomatic events in chronic diseases.
Pagán, Josué; Risco-Martín, José L; Moya, José M; Ayala, José L.
Afiliação
  • Pagán J; Dpt. of Computer Architecture and Automation, Complutense University of Madrid, Madrid 28040, Spain; CCS-Center for Computational Simulation, Campus de Montegancedo UPM, Boadilla del Monte 28660, Spain. Electronic address: jpagan@ucm.es.
  • Risco-Martín JL; Dpt. of Computer Architecture and Automation, Complutense University of Madrid, Madrid 28040, Spain. Electronic address: jlrisco@ucm.es.
  • Moya JM; LSI-Integrated Systems Laboratory, Technical University of Madrid, Madrid 28040, Spain; CCS-Center for Computational Simulation, Campus de Montegancedo UPM, Boadilla del Monte 28660, Spain. Electronic address: josem@die.upm.es.
  • Ayala JL; Dpt. of Computer Architecture and Automation, Complutense University of Madrid, Madrid 28040, Spain. Electronic address: jayala@ucm.es.
J Biomed Inform ; 62: 136-47, 2016 08.
Article em En | MEDLINE | ID: mdl-27260782
Prediction of symptomatic crises in chronic diseases allows to take decisions before the symptoms occur, such as the intake of drugs to avoid the symptoms or the activation of medical alarms. The prediction horizon is in this case an important parameter in order to fulfill the pharmacokinetics of medications, or the time response of medical services. This paper presents a study about the prediction limits of a chronic disease with symptomatic crises: the migraine. For that purpose, this work develops a methodology to build predictive migraine models and to improve these predictions beyond the limits of the initial models. The maximum prediction horizon is analyzed, and its dependency on the selected features is studied. A strategy for model selection is proposed to tackle the trade off between conservative but robust predictive models, with respect to less accurate predictions with higher horizons. The obtained results show a prediction horizon close to 40min, which is in the time range of the drug pharmacokinetics. Experiments have been performed in a realistic scenario where input data have been acquired in an ambulatory clinical study by the deployment of a non-intrusive Wireless Body Sensor Network. Our results provide an effective methodology for the selection of the future horizon in the development of prediction algorithms for diseases experiencing symptomatic crises.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Doença Crônica Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Biomed Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2016 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Doença Crônica Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: J Biomed Inform Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2016 Tipo de documento: Article