Your browser doesn't support javascript.
loading
Multiscale temporal neural dynamics predict performance in a complex sensorimotor task.
Samek, Wojciech; Blythe, Duncan A J; Curio, Gabriel; Müller, Klaus-Robert; Blankertz, Benjamin; Nikulin, Vadim V.
Afiliação
  • Samek W; Machine Learning Group, Fraunhofer Heinrich Hertz Institute, Berlin, Germany.
  • Blythe DAJ; Machine Learning Group, Berlin Institute of Technology, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany.
  • Curio G; Neurophysics Group, Department of Neurology, Charité University Medicine, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany.
  • Müller KR; Machine Learning Group, Berlin Institute of Technology, Berlin, Germany; Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea.
  • Blankertz B; Neurotechnology Group, Berlin Institute of Technology, Berlin, Germany.
  • Nikulin VV; Neurophysics Group, Department of Neurology, Charité University Medicine, Berlin, Germany; Center for Cognition and Decision Making, National Research University Higher School of Economics, Russian Federation. Electronic address: vadim.nikulin@charite.de.
Neuroimage ; 141: 291-303, 2016 Nov 01.
Article em En | MEDLINE | ID: mdl-27402598
ABSTRACT
Ongoing neuronal oscillations are pivotal in brain functioning and are known to influence subjects' performance. This modulation is usually studied on short time scales whilst multiple time scales are rarely considered. In our study we show that Long-Range Temporal Correlations (LRTCs) estimated from the amplitude of EEG oscillations over a range of time-scales predict performance in a complex sensorimotor task, based on Brain-Computer Interfacing (BCI). Our paradigm involved eighty subjects generating covert motor responses to dynamically changing visual cues and thus controlling a computer program through the modulation of neuronal oscillations. The neuronal dynamics were estimated with multichannel EEG. Our results show that (a) BCI task accuracy may be predicted on the basis of LRTCs measured during the preceding training session, and (b) this result was not due to signal-to-noise ratio of the ongoing neuronal oscillations. Our results provide direct empirical evidence in addition to previous theoretical work suggesting that scale-free neuronal dynamics are important for optimal brain functioning.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desempenho Psicomotor / Percepção Visual / Córtex Cerebral / Ritmo alfa / Interfaces Cérebro-Computador / Imaginação / Movimento Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Desempenho Psicomotor / Percepção Visual / Córtex Cerebral / Ritmo alfa / Interfaces Cérebro-Computador / Imaginação / Movimento Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Alemanha