Molecular graph convolutions: moving beyond fingerprints.
J Comput Aided Mol Des
; 30(8): 595-608, 2016 08.
Article
em En
| MEDLINE
| ID: mdl-27558503
Molecular "fingerprints" encoding structural information are the workhorse of cheminformatics and machine learning in drug discovery applications. However, fingerprint representations necessarily emphasize particular aspects of the molecular structure while ignoring others, rather than allowing the model to make data-driven decisions. We describe molecular graph convolutions, a machine learning architecture for learning from undirected graphs, specifically small molecules. Graph convolutions use a simple encoding of the molecular graph-atoms, bonds, distances, etc.-which allows the model to take greater advantage of information in the graph structure. Although graph convolutions do not outperform all fingerprint-based methods, they (along with other graph-based methods) represent a new paradigm in ligand-based virtual screening with exciting opportunities for future improvement.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Gráficos por Computador
/
Desenho de Fármacos
/
Redes Neurais de Computação
/
Desenho Assistido por Computador
/
Aprendizado de Máquina
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
J Comput Aided Mol Des
Assunto da revista:
BIOLOGIA MOLECULAR
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2016
Tipo de documento:
Article
País de afiliação:
Estados Unidos