Transgenerational plasticity following a dual pathogen and stress challenge in fruit flies.
BMC Evol Biol
; 16: 171, 2016 Aug 27.
Article
em En
| MEDLINE
| ID: mdl-27567640
BACKGROUND: Phenotypic plasticity operates across generations, when the parental environment affects phenotypic expression in the offspring. Recent studies in invertebrates have reported transgenerational plasticity in phenotypic responses of offspring when the mothers had been previously exposed to either live or heat-killed pathogens. Understanding whether this plasticity is adaptive requires a factorial design in which both mothers and their offspring are subjected to either the pathogen challenge or a control, in experimentally matched and mismatched combinations. Most prior studies exploring the capacity for pathogen-mediated transgenerational plasticity have, however, failed to adopt such a design. Furthermore, it is currently poorly understood whether the magnitude or direction of pathogen-mediated transgenerational responses will be sensitive to environmental heterogeneity. Here, we explored the transgenerational consequences of a dual pathogen and stress challenge administered in the maternal generation in the fruit fly, Drosophila melanogaster. Prospective mothers were assigned to a non-infectious pathogen treatment consisting of an injection with heat-killed bacteria or a procedural control, and a stress treatment consisting of sleep deprivation or control. Their daughters and sons were similarly assigned to the same pathogen treatment, prior to measurement of their reproductive success. RESULTS: We observed transgenerational interactions involving pathogen treatments of mothers and their offspring, on the reproductive success of daughters but not sons. These interactions were unaffected by sleep deprivation. CONCLUSIONS: The direction of the transgenerational effects was not consistent with that predicted under a scenario of adaptive transgenerational plasticity. Instead, they were indicative of expectations based on terminal investment.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Drosophila melanogaster
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
BMC Evol Biol
Assunto da revista:
BIOLOGIA
Ano de publicação:
2016
Tipo de documento:
Article
País de afiliação:
Austrália