Your browser doesn't support javascript.
loading
How computational models contribute to our understanding of the germ line.
Atwell, Kathryn; Dunn, Sara-Jane; Osborne, James M; Kugler, Hillel; Hubbard, E Jane Albert.
Afiliação
  • Atwell K; Computational Biology Group, Department of Computer Science, University of Oxford, Oxford, United Kingdom.
  • Dunn SJ; Biological Computation, Microsoft Research, Cambridge, United Kingdom.
  • Osborne JM; Biological Computation, Microsoft Research, Cambridge, United Kingdom.
  • Kugler H; School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
  • Hubbard EJ; Biological Computation, Microsoft Research, Cambridge, United Kingdom.
Mol Reprod Dev ; 83(11): 944-957, 2016 11.
Article em En | MEDLINE | ID: mdl-27627621
Computational models are an invaluable tool in modern biology. They provide a framework within which to summarize existing knowledge, enable competing hypotheses to be compared qualitatively and quantitatively, and to facilitate the interpretation of complex data. Moreover, models allow questions to be investigated that are difficult to approach experimentally. Theories can be tested in context, identifying the gaps in our understanding and potentially leading to new hypotheses. Models can be developed on a variety of scales and with different levels of mechanistic detail, depending on the available data, the biological questions of interest, and the available mathematical and computational tools. The goal of this review is to provide a broad picture of how modeling has been applied to reproductive biology. Specifically, we look at four uses of modeling: (i) comparing hypotheses; (ii) interpreting data; (iii) exploring experimentally challenging questions; and (iv) hypothesis evaluation and generation. We present examples of each of these applications in reproductive biology, drawing from a range of organisms-including Drosophila, Caenorhabditis elegans, mouse, and humans. We aim to describe the data and techniques used to construct each model, and to highlight the benefits of modeling to the field, as complementary to experimental work. Mol. Reprod. Dev. 83: 944-957, 2016 © 2016 Wiley Periodicals, Inc.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reprodução / Simulação por Computador / Células Germinativas / Modelos Biológicos Limite: Animals / Humans Idioma: En Revista: Mol Reprod Dev Assunto da revista: BIOLOGIA MOLECULAR / MEDICINA REPRODUTIVA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reprodução / Simulação por Computador / Células Germinativas / Modelos Biológicos Limite: Animals / Humans Idioma: En Revista: Mol Reprod Dev Assunto da revista: BIOLOGIA MOLECULAR / MEDICINA REPRODUTIVA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Reino Unido