Your browser doesn't support javascript.
loading
3D Framework DNA Origami with Layered Crossovers.
Hong, Fan; Jiang, Shuoxing; Wang, Tong; Liu, Yan; Yan, Hao.
Afiliação
  • Hong F; School of Molecular Science and Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
  • Jiang S; School of Molecular Science and Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
  • Wang T; CUNY Advanced Science Research Center, New York, NY, USA.
  • Liu Y; School of Molecular Science and Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. yan_liu@asu.edu.
  • Yan H; School of Molecular Science and Biodesign Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA. hao.yan@asu.edu.
Angew Chem Int Ed Engl ; 55(41): 12832-5, 2016 10 04.
Article em En | MEDLINE | ID: mdl-27628457
ABSTRACT
Designer DNA architectures with nanoscale geometric controls provide a programmable molecular toolbox for engineering complex nanodevices. Scaffolded DNA origami has dramatically improved our ability to design and construct DNA nanostructures with finite size and spatial addressability. Here we report a novel design strategy to engineer multilayered wireframe DNA structures by introducing crossover pairs that connect neighboring layers of DNA double helices. These layered crossovers (LX) allow the scaffold or helper strands to travel through different layers and can control the relative orientation of DNA helices in neighboring layers. Using this design strategy, we successfully constructed four versions of two-layer parallelogram structures with well-defined interlayer angles, a three-layer structure with triangular cavities, and a 9- and 15-layer square lattices. This strategy provides a general route to engineer 3D framework DNA nanostructures with controlled cavities and opportunities to design host-guest networks analogs to those produced with metal organic frameworks.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Nanoestruturas Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA / Nanoestruturas Idioma: En Revista: Angew Chem Int Ed Engl Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos