Your browser doesn't support javascript.
loading
Towards patient-specific modeling of mitral valve repair: 3D transesophageal echocardiography-derived parameter estimation.
Zhang, Fan; Kanik, Jingjing; Mansi, Tommaso; Voigt, Ingmar; Sharma, Puneet; Ionasec, Razvan Ioan; Subrahmanyan, Lakshman; Lin, Ben A; Sugeng, Lissa; Yuh, David; Comaniciu, Dorin; Duncan, James.
Afiliação
  • Zhang F; Department of Biomedical Engineering, Yale University, New Haven, USA. Electronic address: fan.zhang@yale.edu.
  • Kanik J; Department of Biomedical Engineering, Yale University, New Haven, USA.
  • Mansi T; Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, USA.
  • Voigt I; Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, USA.
  • Sharma P; Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, USA.
  • Ionasec RI; Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, USA.
  • Subrahmanyan L; Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, USA.
  • Lin BA; Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, USA.
  • Sugeng L; Section of Cardiovascular Medicine, Yale School of Medicine, New Haven, USA.
  • Yuh D; Section of Cardiac Surgery, Yale School of Medicine, New Haven, USA.
  • Comaniciu D; Siemens Corporation, Corporate Technology, Imaging and Computer Vision, Princeton, USA.
  • Duncan J; Department of Biomedical Engineering, Yale University, New Haven, USA; Department of Electrical Engineering, Yale University, New Haven, USA; Department of Diagnostic Radiology and Biomedical Imaging, Yale University, New Haven, USA.
Med Image Anal ; 35: 599-609, 2017 01.
Article em En | MEDLINE | ID: mdl-27718462
Transesophageal echocardiography (TEE) is routinely used to provide important qualitative and quantitative information regarding mitral regurgitation. Contemporary planning of surgical mitral valve repair, however, still relies heavily upon subjective predictions based on experience and intuition. While patient-specific mitral valve modeling holds promise, its effectiveness is limited by assumptions that must be made about constitutive material properties. In this paper, we propose and develop a semi-automated framework that combines machine learning image analysis with geometrical and biomechanical models to build a patient-specific mitral valve representation that incorporates image-derived material properties. We use our computational framework, along with 3D TEE images of the open and closed mitral valve, to estimate values for chordae rest lengths and leaflet material properties. These parameters are initialized using generic values and optimized to match the visualized deformation of mitral valve geometry between the open and closed states. Optimization is achieved by minimizing the summed Euclidean distances between the estimated and image-derived closed mitral valve geometry. The spatially varying material parameters of the mitral leaflets are estimated using an extended Kalman filter to take advantage of the temporal information available from TEE. This semi-automated and patient-specific modeling framework was tested on 15 TEE image acquisitions from 14 patients. Simulated mitral valve closures yielded average errors (measured by point-to-point Euclidean distances) of 1.86 ± 1.24 mm. The estimated material parameters suggest that the anterior leaflet is stiffer than the posterior leaflet and that these properties vary between individuals, consistent with experimental observations described in the literature.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecocardiografia Transesofagiana / Ecocardiografia Tridimensional / Modelagem Computacional Específica para o Paciente / Valva Mitral / Insuficiência da Valva Mitral Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research Limite: Humans Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ecocardiografia Transesofagiana / Ecocardiografia Tridimensional / Modelagem Computacional Específica para o Paciente / Valva Mitral / Insuficiência da Valva Mitral Tipo de estudo: Diagnostic_studies / Prognostic_studies / Qualitative_research Limite: Humans Idioma: En Revista: Med Image Anal Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2017 Tipo de documento: Article