Your browser doesn't support javascript.
loading
Optimization of an endovascular magnetic filter for maximized capture of magnetic nanoparticles.
Kondapavulur, Sravani; Cote, Andre M; Neumann, Kiel D; Jordan, Caroline D; McCoy, David; Mabray, Marc C; Liu, Derek; Sze, Chia-Hung; Gautam, Ayushi; VanBrocklin, Henry F; Wilson, Mark; Hetts, Steven W.
Afiliação
  • Kondapavulur S; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
  • Cote AM; Department of Bioengineering, University of California, Berkeley, CA, USA.
  • Neumann KD; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
  • Jordan CD; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
  • McCoy D; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
  • Mabray MC; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
  • Liu D; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
  • Sze CH; Department of Bioengineering, University of California, Berkeley, CA, USA.
  • Gautam A; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
  • VanBrocklin HF; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
  • Wilson M; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
  • Hetts SW; Department of Radiology and Biomedical Imaging, University of California, 505 Parnassus Avenue, L-351, San Francisco, CA, 94143-0628, USA.
Biomed Microdevices ; 18(6): 109, 2016 12.
Article em En | MEDLINE | ID: mdl-27830455
ABSTRACT
To computationally optimize the design of an endovascular magnetic filtration device that binds iron oxide nanoparticles and to validate simulations with experimental results of prototype devices in physiologic flow testing. Three-dimensional computational models of different endovascular magnetic filter devices assessed magnetic particle capture. We simulated a series of cylindrical neodymium N52 magnets and capture of 1500 iron oxide nanoparticles infused in a simulated 14 mm-diameter vessel. Device parameters varied included magnetization orientation (across the diameter, "D", along the length, "L", of the filter), magnet outer diameter (3, 4, 5 mm), magnet length (5, 10 mm), and spacing between magnets (1, 3 mm). Top designs were tested in vitro using 89Zr-radiolabeled iron oxide nanoparticles and gamma counting both in continuous and multiple pass flow model. Computationally, "D" magnetized devices had greater capture than "L" magnetized devices. Increasing outer diameter of magnets increased particle capture as follows "D" designs, 3 mm 12.8-13.6 %, 4 mm 16.6-17.6 %, 5 mm 21.8-24.6 %; "L" designs, 3 mm 5.6-10 %, 4 mm 9.4-15.8 %, 5 mm 14.8-21.2 %. In vitro, while there was significant capture by all device designs, with most capturing 87-93 % within the first two minutes, compared to control non-magnetic devices, there was no significant difference in particle capture with the parameters varied. The computational study predicts that endovascular magnetic filters demonstrate maximum particle capture with "D" magnetization. In vitro flow testing demonstrated no difference in capture with varied parameters. Clinically, "D" magnetized devices would be most practical, sized as large as possible without causing intravascular flow obstruction.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vasos Sanguíneos / Compostos Férricos / Nanopartículas / Campos Magnéticos / Filtração Tipo de estudo: Prognostic_studies Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vasos Sanguíneos / Compostos Férricos / Nanopartículas / Campos Magnéticos / Filtração Tipo de estudo: Prognostic_studies Idioma: En Revista: Biomed Microdevices Assunto da revista: ENGENHARIA BIOMEDICA Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos