Your browser doesn't support javascript.
loading
Expanding the Host Range of Hepatitis C Virus through Viral Adaptation.
von Schaewen, Markus; Dorner, Marcus; Hueging, Kathrin; Foquet, Lander; Gerges, Sherif; Hrebikova, Gabriela; Heller, Brigitte; Bitzegeio, Julia; Doerrbecker, Juliane; Horwitz, Joshua A; Gerold, Gisa; Suerbaum, Sebastian; Rice, Charles M; Meuleman, Philip; Pietschmann, Thomas; Ploss, Alexander.
Afiliação
  • von Schaewen M; Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
  • Dorner M; Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York, USA.
  • Hueging K; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
  • Foquet L; Center for Vaccinology, Ghent University, Ghent, Belgium.
  • Gerges S; Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
  • Hrebikova G; Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
  • Heller B; Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA.
  • Bitzegeio J; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
  • Doerrbecker J; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
  • Horwitz JA; Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York, USA.
  • Gerold G; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
  • Suerbaum S; Hannover Medical School, Hannover, Germany.
  • Rice CM; Center for the Study of Hepatitis C, Laboratory of Virology and Infectious Diseases, The Rockefeller University, New York, New York, USA.
  • Meuleman P; Center for Vaccinology, Ghent University, Ghent, Belgium.
  • Pietschmann T; Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
  • Ploss A; Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA aploss@princeton.edu.
mBio ; 7(6)2016 11 08.
Article em En | MEDLINE | ID: mdl-27834208
ABSTRACT
Hepatitis C virus (HCV) species tropism is incompletely understood. We have previously shown that at the level of entry, human CD81 and occludin (OCLN) comprise the minimal set of human factors needed for viral uptake into murine cells. As an alternative approach to genetic humanization, species barriers can be overcome by adapting HCV to use the murine orthologues of these entry factors. We previously generated a murine tropic HCV (mtHCV or Jc1/mCD81) strain harboring three mutations within the viral envelope proteins that allowed productive entry into mouse cell lines. In this study, we aimed to characterize the ability of mtHCV to enter and infect mouse hepatocytes in vivo and in vitro Using a highly sensitive, Cre-activatable reporter, we demonstrate that mtHCV can enter mouse hepatocytes in vivo in the absence of any human cofactors. Viral entry still relied on expression of mouse CD81 and SCARB1 and was more efficient when mouse CD81 and OCLN were overexpressed. HCV entry could be significantly reduced in the presence of anti-HCV E2 specific antibodies, suggesting that uptake of mtHCV is dependent on viral glycoproteins. Despite mtHCV's ability to enter murine hepatocytes in vivo, we did not observe persistent infection, even in animals with severely blunted type I and III interferon signaling and impaired adaptive immune responses. Altogether, these results establish proof of concept that the barriers limiting HCV species tropism can be overcome by viral adaptation. However, additional viral adaptations will likely be needed to increase the robustness of a murine model system for hepatitis C. IMPORTANCE At least 150 million individuals are chronically infected with HCV and are at risk of developing serious liver disease. Despite the advent of effective antiviral therapy, the frequency of chronic carriers has only marginally decreased. A major roadblock in developing a vaccine that would prevent transmission is the scarcity of animal models that are susceptible to HCV infection. It is poorly understood why HCV infects only humans and chimpanzees. To develop an animal model for hepatitis C, previous efforts focused on modifying the host environment of mice, for example, to render them more susceptible to HCV infection. Here, we attempted a complementary approach in which a laboratory-derived HCV variant was tested for its ability to infect mice. We demonstrate that this engineered HCV strain can enter mouse liver cells but does not replicate efficiently. Thus, additional adaptations are likely needed to construct a robust animal model for HCV.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Hepatite C / Hepacivirus / Internalização do Vírus Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: MBio Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Adaptação Fisiológica / Hepatite C / Hepacivirus / Internalização do Vírus Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: MBio Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Estados Unidos