Your browser doesn't support javascript.
loading
Effect of the Streptococcus agalactiae Virulence Regulator CovR on the Pathogenesis of Urinary Tract Infection.
Sullivan, Matthew J; Leclercq, Sophie Y; Ipe, Deepak S; Carey, Alison J; Smith, Joshua P; Voller, Nathan; Cripps, Allan W; Ulett, Glen C.
Afiliação
  • Sullivan MJ; School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
  • Leclercq SY; School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
  • Ipe DS; Research and Development Center, Ezequiel Dias Foundation (FUNED), Belo Horizonte, Brazil.
  • Carey AJ; School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
  • Smith JP; School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
  • Voller N; School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
  • Cripps AW; School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.
  • Ulett GC; School of Biological Sciences, University of East Anglia, Norwich Research Park, United Kingdom.
J Infect Dis ; 215(3): 475-483, 2017 02 01.
Article em En | MEDLINE | ID: mdl-28011914
ABSTRACT

Background:

Streptococcus agalactiae can cause urinary tract infection (UTI). The role of the S. agalactiae global virulence regulator, CovR, in UTI pathogenesis is unknown.

Methods:

We used murine and human bladder uroepithelial cell models of UTI and S. agalactiae mutants in covR and related factors, including ß-hemolysin/cytolysin (ß-h/c), surface-anchored adhesin HvgA, and capsule to study the role of CovR in UTI.

Results:

We found that covR-deficient serotype III S. agalactiae 874391 was significantly attenuated for colonization in mice and adhesion to uroepithelial cells. Mice infected with covR-deficient S. agalactiae produced less proinflammatory cytokines than those infected with wild-type 874391. Acute cytotoxicity in uroepithelial cells triggered by covR-deficient but not wild-type 874391 was associated with significant caspase 3 activation. Mechanistically, covR mutation significantly altered the expression of several genes in S. agalactiae 874391 that encode key virulence factors, including ß-h/c and HvgA, but not capsule. Subsequent mutational analyses revealed that HvgA and capsule, but not the ß-h/c, exerted significant effects on colonization of the murine urinary tract in vivo.

Conclusions:

S. agalactiae CovR promotes bladder infection and inflammation, as well as adhesion to and viability of uroepithelial cells. The pathogenesis of S. agalactiae UTI is complex, multifactorial, and influenced by virulence effects of CovR, HvgA, and capsule.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Streptococcus agalactiae / Proteínas de Bactérias / Infecções Urinárias / Fatores de Virulência Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: J Infect Dis Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Streptococcus agalactiae / Proteínas de Bactérias / Infecções Urinárias / Fatores de Virulência Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Female / Humans Idioma: En Revista: J Infect Dis Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Austrália