Your browser doesn't support javascript.
loading
A Single-Cell Roadmap of Lineage Bifurcation in Human ESC Models of Embryonic Brain Development.
Yao, Zizhen; Mich, John K; Ku, Sherman; Menon, Vilas; Krostag, Anne-Rachel; Martinez, Refugio A; Furchtgott, Leon; Mulholland, Heather; Bort, Susan; Fuqua, Margaret A; Gregor, Ben W; Hodge, Rebecca D; Jayabalu, Anu; May, Ryan C; Melton, Samuel; Nelson, Angelique M; Ngo, N Kiet; Shapovalova, Nadiya V; Shehata, Soraya I; Smith, Michael W; Tait, Leah J; Thompson, Carol L; Thomsen, Elliot R; Ye, Chaoyang; Glass, Ian A; Kaykas, Ajamete; Yao, Shuyuan; Phillips, John W; Grimley, Joshua S; Levi, Boaz P; Wang, Yanling; Ramanathan, Sharad.
Afiliação
  • Yao Z; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Mich JK; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Ku S; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Menon V; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Krostag AR; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Martinez RA; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Furchtgott L; Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138, USA.
  • Mulholland H; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Bort S; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Fuqua MA; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Gregor BW; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Hodge RD; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Jayabalu A; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • May RC; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Melton S; School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA.
  • Nelson AM; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Ngo NK; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Shapovalova NV; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Shehata SI; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Smith MW; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Tait LJ; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Thompson CL; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Thomsen ER; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Ye C; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Glass IA; Division of Genetic Medicine, University of Washington, Seattle Children's Hospital, Seattle, WA 98105, USA.
  • Kaykas A; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Yao S; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Phillips JW; Allen Institute for Brain Science, Seattle, WA 98109, USA.
  • Grimley JS; Allen Institute for Brain Science, Seattle, WA 98109, USA. Electronic address: grimley@gmail.com.
  • Levi BP; Allen Institute for Brain Science, Seattle, WA 98109, USA. Electronic address: boazl@alleninstitute.org.
  • Wang Y; Allen Institute for Brain Science, Seattle, WA 98109, USA. Electronic address: ywseattle@gmail.com.
  • Ramanathan S; Allen Institute for Brain Science, Seattle, WA 98109, USA; Molecular and Cellular Biology Department, Harvard University, Cambridge, MA 02138, USA; School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA. Electronic address: sharad@post.harvard.edu.
Cell Stem Cell ; 20(1): 120-134, 2017 01 05.
Article em En | MEDLINE | ID: mdl-28094016
ABSTRACT
During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/ß-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Linhagem da Célula / Desenvolvimento Embrionário / Análise de Célula Única / Células-Tronco Embrionárias Humanas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Cell Stem Cell Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Linhagem da Célula / Desenvolvimento Embrionário / Análise de Célula Única / Células-Tronco Embrionárias Humanas Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Cell Stem Cell Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos