Your browser doesn't support javascript.
loading
Anatomical study of renal arterial vasculature and its potential impact on partial nephrectomy.
Macchi, Veronica; Crestani, Alessandro; Porzionato, Andrea; Sfriso, Maria Martina; Morra, Aldo; Rossanese, Marta; Novara, Giacomo; De Caro, Raffaele; Ficarra, Vincenzo.
Afiliação
  • Macchi V; Institute of Human Anatomy University of Padova, Padova, Italy.
  • Crestani A; Academic Medical Centre Hospital Santa Maria della Misericordia, Udine, Italy.
  • Porzionato A; Institute of Human Anatomy University of Padova, Padova, Italy.
  • Sfriso MM; Institute of Human Anatomy University of Padova, Padova, Italy.
  • Morra A; Section of Radiology, Euganea Medica Center, Padova, Italy.
  • Rossanese M; Academic Medical Centre Hospital Santa Maria della Misericordia, Udine, Italy.
  • Novara G; Department of Oncological, Surgical and Gastrointestinal Sciences, Urology Unit, University of Padova, Padova, Italy.
  • De Caro R; Institute of Human Anatomy University of Padova, Padova, Italy.
  • Ficarra V; Academic Medical Centre Hospital Santa Maria della Misericordia, Udine, Italy.
BJU Int ; 120(1): 83-91, 2017 07.
Article em En | MEDLINE | ID: mdl-28117559
OBJECTIVES: To validate Graves' classification of the intrarenal arteries and to verify the absence of collateral arterial blood supply between different renal segments, in order to maximize peri-operative and functional outcomes of partial nephrectomy. MATERIALS AND METHODS: The study was performed on 15 normal kidneys sampled from eight unembalmed cadavers. Kidneys with the surrounding perirenal fat tissue were removed en bloc with the abdominal segment of the aorta. The renal artery was injected with acrylic and radiopaque resins, with the specimen suspended in water. CT examination of the injected kidneys was performed to analyse the branches located deeply. After imaging acquisition, the specimens were treated with sodium hydroxide for removal of the parenchyma to obtain vascular casts. RESULTS: Ten casts (66.6%) showed the classic subdivision of the main artery into single posterior and anterior branches. With regard to the distribution of the segmental or second-order arteries, only two casts (13%) showed a pattern similar to that described by Graves, characterized by four segmental (second-order) branches coming from the anterior renal artery (apical, superior, middle and inferior). In the remaining 13 kidneys (87%) a different arterial vascular network was detected. In 10 casts (80%) a single renal segment was vascularized by two or more different branches coming from an artery leading to another segment (multiple vascularization). Multiple vascularization was observed in three (20%) apical segments, five (33%) superior segments, six (40%) middle segments, seven (47%) inferior segments and two (13%) posterior segments. CONCLUSIONS: This study shows that in the human kidneys the arterial vasculature is frequently different from that described by Graves. Moreover, in a significant percentage of cases, a single renal segment receives two or more branches that originate from an artery leading to another segment.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artéria Renal / Cadáver / Rim / Nefrectomia Limite: Aged / Aged80 / Female / Humans / Male Idioma: En Revista: BJU Int Assunto da revista: UROLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Artéria Renal / Cadáver / Rim / Nefrectomia Limite: Aged / Aged80 / Female / Humans / Male Idioma: En Revista: BJU Int Assunto da revista: UROLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Itália