Your browser doesn't support javascript.
loading
Active Interaction Mapping Reveals the Hierarchical Organization of Autophagy.
Kramer, Michael H; Farré, Jean-Claude; Mitra, Koyel; Yu, Michael Ku; Ono, Keiichiro; Demchak, Barry; Licon, Katherine; Flagg, Mitchell; Balakrishnan, Rama; Cherry, J Michael; Subramani, Suresh; Ideker, Trey.
Afiliação
  • Kramer MH; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  • Farré JC; Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
  • Mitra K; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  • Yu MK; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  • Ono K; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  • Demchak B; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  • Licon K; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  • Flagg M; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
  • Balakrishnan R; Department of Genetics, Stanford University, Stanford, CA 94304, USA.
  • Cherry JM; Department of Genetics, Stanford University, Stanford, CA 94304, USA.
  • Subramani S; Section of Molecular Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA. Electronic address: ssubramani@ucsd.edu.
  • Ideker T; Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. Electronic address: tideker@ucsd.edu.
Mol Cell ; 65(4): 761-774.e5, 2017 Feb 16.
Article em En | MEDLINE | ID: mdl-28132844
We have developed a general progressive procedure, Active Interaction Mapping, to guide assembly of the hierarchy of functions encoding any biological system. Using this process, we assemble an ontology of functions comprising autophagy, a central recycling process implicated in numerous diseases. A first-generation model, built from existing gene networks in Saccharomyces, captures most known autophagy components in broad relation to vesicle transport, cell cycle, and stress response. Systematic analysis identifies synthetic-lethal interactions as most informative for further experiments; consequently, we saturate the model with 156,364 such measurements across autophagy-activating conditions. These targeted interactions provide more information about autophagy than all previous datasets, producing a second-generation ontology of 220 functions. Approximately half are previously unknown; we confirm roles for Gyp1 at the phagophore-assembly site, Atg24 in cargo engulfment, Atg26 in cytoplasm-to-vacuole targeting, and Ssd1, Did4, and others in selective and non-selective autophagy. The procedure and autophagy hierarchy are at http://atgo.ucsd.edu/.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Autofagia / Genômica / Proteínas de Saccharomyces cerevisiae / Biologia de Sistemas / Redes Reguladoras de Genes Limite: Humans Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Autofagia / Genômica / Proteínas de Saccharomyces cerevisiae / Biologia de Sistemas / Redes Reguladoras de Genes Limite: Humans Idioma: En Revista: Mol Cell Assunto da revista: BIOLOGIA MOLECULAR Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos