Your browser doesn't support javascript.
loading
Overlapping and Divergent Actions of Structurally Distinct Histone Deacetylase Inhibitors in Cardiac Fibroblasts.
Schuetze, Katherine B; Stratton, Matthew S; Blakeslee, Weston W; Wempe, Michael F; Wagner, Florence F; Holson, Edward B; Kuo, Yin-Ming; Andrews, Andrew J; Gilbert, Tonya M; Hooker, Jacob M; McKinsey, Timothy A.
Afiliação
  • Schuetze KB; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • Stratton MS; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • Blakeslee WW; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • Wempe MF; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • Wagner FF; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • Holson EB; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • Kuo YM; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • Andrews AJ; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • Gilbert TM; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • Hooker JM; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
  • McKinsey TA; Division of Cardiology and Consortium for Fibrosis Research and Translation, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado (K.B.S., M.S.S., W.W.B., T.A.M.); Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical, Sciences, Unive
J Pharmacol Exp Ther ; 361(1): 140-150, 2017 04.
Article em En | MEDLINE | ID: mdl-28174211
Inhibitors of zinc-dependent histone deacetylases (HDACs) profoundly affect cellular function by altering gene expression via changes in nucleosomal histone tail acetylation. Historically, investigators have employed pan-HDAC inhibitors, such as the hydroxamate trichostatin A (TSA), which simultaneously targets members of each of the three zinc-dependent HDAC classes (classes I, II, and IV). More recently, class- and isoform-selective HDAC inhibitors have been developed, providing invaluable chemical biology probes for dissecting the roles of distinct HDACs in the control of various physiologic and pathophysiological processes. For example, the benzamide class I HDAC-selective inhibitor, MGCD0103 [N-(2-aminophenyl)-4-[[(4-pyridin-3-ylpyrimidin-2-yl)amino]methyl] benzamide], was shown to block cardiac fibrosis, a process involving excess extracellular matrix deposition, which often results in heart dysfunction. Here, we compare the mechanisms of action of structurally distinct HDAC inhibitors in isolated primary cardiac fibroblasts, which are the major extracellular matrix-producing cells of the heart. TSA, MGCD0103, and the cyclic peptide class I HDAC inhibitor, apicidin, exhibited a common ability to enhance histone acetylation, and all potently blocked cardiac fibroblast cell cycle progression. In contrast, MGCD0103, but not TSA or apicidin, paradoxically increased expression of a subset of fibrosis-associated genes. Using the cellular thermal shift assay, we provide evidence that the divergent effects of HDAC inhibitors on cardiac fibroblast gene expression relate to differential engagement of HDAC1- and HDAC2-containing complexes. These findings illustrate the importance of employing multiple compounds when pharmacologically assessing HDAC function in a cellular context and during HDAC inhibitor drug development.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Miócitos Cardíacos / Inibidores de Histona Desacetilases / Fibroblastos Limite: Animals Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Miócitos Cardíacos / Inibidores de Histona Desacetilases / Fibroblastos Limite: Animals Idioma: En Revista: J Pharmacol Exp Ther Ano de publicação: 2017 Tipo de documento: Article