Your browser doesn't support javascript.
loading
A statistical method for the conservative adjustment of false discovery rate (q-value).
Lai, Yinglei.
Afiliação
  • Lai Y; Department of Statistics and Biostatistics Center, The George Washington University, Washington D.C., 20052, USA. ylai@gwu.edu.
BMC Bioinformatics ; 18(Suppl 3): 69, 2017 Mar 14.
Article em En | MEDLINE | ID: mdl-28361675
BACKGROUND: q-value is a widely used statistical method for estimating false discovery rate (FDR), which is a conventional significance measure in the analysis of genome-wide expression data. q-value is a random variable and it may underestimate FDR in practice. An underestimated FDR can lead to unexpected false discoveries in the follow-up validation experiments. This issue has not been well addressed in literature, especially in the situation when the permutation procedure is necessary for p-value calculation. RESULTS: We proposed a statistical method for the conservative adjustment of q-value. In practice, it is usually necessary to calculate p-value by a permutation procedure. This was also considered in our adjustment method. We used simulation data as well as experimental microarray or sequencing data to illustrate the usefulness of our method. CONCLUSIONS: The conservativeness of our approach has been mathematically confirmed in this study. We have demonstrated the importance of conservative adjustment of q-value, particularly in the situation that the proportion of differentially expressed genes is small or the overall differential expression signal is weak.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Humano / Modelos Estatísticos / Biologia Computacional Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans / Male Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Genoma Humano / Modelos Estatísticos / Biologia Computacional Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Humans / Male Idioma: En Revista: BMC Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos