Photon blockade via quantum interference in a strong coupling qubit-cavity system.
Opt Express
; 25(6): 6767-6783, 2017 Mar 20.
Article
em En
| MEDLINE
| ID: mdl-28381020
In a coherently-driven nanocavity QED system, the one-photon blockade via quantum interference is investigated by the modified Lindblad master equation and without using the secular approximation as well. Based on the dressed bases of the Rabi Hamiltonian, a modified Lindblad master equation is obtained, which is valid for any arbitrary degree of the qubit-cavity interaction. It is found that the damping coefficients are very sensitive to interaction strength between the qubit and the cavity mode. How to enhance the one-photon blockade by using the quantum interference effect is discussed with the generalized second-order correlation function and the second-order perturbation in the five-state truncation of the Hilbert space. It is found that, under suitable pump or detection conditions, a strong one-photon blockade can be realized by completely eliminating the two-photon emission. Moreover, even for a strong cavity damping rate, there exhibits a large number of cavity photons by utilizing the quantum interference mechanism.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Opt Express
Assunto da revista:
OFTALMOLOGIA
Ano de publicação:
2017
Tipo de documento:
Article