Your browser doesn't support javascript.
loading
Estimating species richness in hyper-diverse large tree communities.
Ter Steege, Hans; Sabatier, Daniel; Mota de Oliveira, Sylvia; Magnusson, William E; Molino, Jean-François; Gomes, Vitor F; Pos, Edwin T; Salomão, Rafael P.
Afiliação
  • Ter Steege H; Naturalis Biodiversity Center, Leiden, The Netherlands.
  • Sabatier D; Museu Paraense Emílio Goeldi, Belem, Para, Brazil.
  • Mota de Oliveira S; Systems Ecology, Free University Amsterdam, Amsterdam, The Netherlands.
  • Magnusson WE; AMAP, IRD, Cirad, CNRS, INRA, Université de Montpellier, Montpellier, France.
  • Molino JF; Naturalis Biodiversity Center, Leiden, The Netherlands.
  • Gomes VF; Instituto Nacional de Pesquisas da Amazônia, Manaus, Amazonas, Brazil.
  • Pos ET; AMAP, IRD, Cirad, CNRS, INRA, Université de Montpellier, Montpellier, France.
  • Salomão RP; Museu Paraense Emílio Goeldi, Belem, Para, Brazil.
Ecology ; 98(5): 1444-1454, 2017 May.
Article em En | MEDLINE | ID: mdl-28419434
Species richness estimation is one of the most widely used analyses carried out by ecologists, and nonparametric estimators are probably the most used techniques to carry out such estimations. We tested the assumptions and results of nonparametric estimators and those of a logseries approach to species richness estimation for simulated tropical forests and five data sets from the field. We conclude that nonparametric estimators are not suitable to estimate species richness in tropical forests, where sampling intensity is usually low and richness is high, because the assumptions of the methods do not meet the sampling strategy used in most studies. The logseries, while also requiring substantial sampling, is much more effective in estimating species richness than commonly used nonparametric estimators, and its assumptions better match the way field data is being collected.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Árvores / Florestas / Biodiversidade Idioma: En Revista: Ecology Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Árvores / Florestas / Biodiversidade Idioma: En Revista: Ecology Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Holanda