Your browser doesn't support javascript.
loading
Synaptic transistor with a reversible and analog conductance modulation using a Pt/HfOx/n-IGZO memcapacitor.
Yang, Paul; Jun Kim, Hyung; Zheng, Hong; Won Beom, Geon; Park, Jong-Sung; Jung Kang, Chi; Yoon, Tae-Sik.
Afiliação
  • Yang P; Department of Materials Science and Engineering, Myongji University, Gyeonggi-do 17058, Republic of Korea.
Nanotechnology ; 28(22): 225201, 2017 Jun 02.
Article em En | MEDLINE | ID: mdl-28488590
ABSTRACT
A synaptic transistor emulating the biological synaptic motion is demonstrated using the memcapacitance characteristics in a Pt/HfOx/n-indium-gallium-zinc-oxide (IGZO) memcapacitor. First, the metal-oxide-semiconductor (MOS) capacitor with Pt/HfOx/n-IGZO structure exhibits analog, polarity-dependent, and reversible memcapacitance in capacitance-voltage (C-V), capacitance-time (C-t), and voltage-pulse measurements. When a positive voltage is applied repeatedly to the Pt electrode, the accumulation capacitance increases gradually and sequentially. The depletion capacitance also increases consequently. The capacitances are restored by repeatedly applying a negative voltage, confirming the reversible memcapacitance. The analog and reversible memcapacitance emulates the potentiation and depression synaptic motions. The synaptic thin-film transistor (TFT) with this memcapacitor also shows the synaptic motion with gradually increasing drain current by repeatedly applying the positive gate and drain voltages and reversibly decreasing one by applying the negative voltages, representing synaptic weight modulation. The reversible and analog conductance change in the transistor at both the voltage sweep and pulse operations is obtained through the memcapacitance and threshold voltage shift at the same time. These results demonstrate the synaptic transistor operations with a MOS memcapacitor gate stack consisting of Pt/HfOx/n-IGZO.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanotechnology Ano de publicação: 2017 Tipo de documento: Article