Your browser doesn't support javascript.
loading
Asynchronous Cholinergic Drive Correlates with Excitation-Inhibition Imbalance via a Neuronal Ca2+ Sensor Protein.
Zhou, Keming; Cherra, Salvatore J; Goncharov, Alexandr; Jin, Yishi.
Afiliação
  • Zhou K; Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
  • Cherra SJ; Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
  • Goncharov A; Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA.
  • Jin Y; Division of Biological Sciences, Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA 92093, USA. Electronic address: yijin@ucsd.edu.
Cell Rep ; 19(6): 1117-1129, 2017 05 09.
Article em En | MEDLINE | ID: mdl-28494862
ABSTRACT
Excitation-inhibition imbalance in neural networks is widely linked to neurological and neuropsychiatric disorders. However, how genetic factors alter neuronal activity, leading to excitation-inhibition imbalance, remains unclear. Here, using the C. elegans locomotor circuit, we examine how altering neuronal activity for varying time periods affects synaptic release pattern and animal behavior. We show that while short-duration activation of excitatory cholinergic neurons elicits a reversible enhancement of presynaptic strength, persistent activation results to asynchronous and reduced cholinergic drive, inducing imbalance between endogenous excitation and inhibition. We find that the neuronal calcium sensor protein NCS-2 is required for asynchronous cholinergic release in an activity-dependent manner and dampens excitability of inhibitory neurons non-cell autonomously. The function of NCS-2 requires its Ca2+ binding and membrane association domains. These results reveal a synaptic mechanism implicating asynchronous release in regulation of excitation-inhibition balance.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Potenciais Pós-Sinápticos Excitadores / Proteínas Sensoras de Cálcio Neuronal / Potenciais Pós-Sinápticos Inibidores / Neurônios Colinérgicos Limite: Animals Idioma: En Revista: Cell Rep Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Potenciais Pós-Sinápticos Excitadores / Proteínas Sensoras de Cálcio Neuronal / Potenciais Pós-Sinápticos Inibidores / Neurônios Colinérgicos Limite: Animals Idioma: En Revista: Cell Rep Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos