Your browser doesn't support javascript.
loading
Molecular and Biocompatibility Characterization of Red Blood Cell Membrane Targeted and Cell-Penetrating-Peptide-Modified Polymeric Nanoparticles.
Sahoo, Kaustuv; Karumuri, Sriharsha; Hikkaduwa Koralege, Rangika S; Flynn, Nicholas H; Hartson, Steve; Liu, Jing; Ramsey, Joshua D; Kalkan, A Kaan; Pope, Carey; Ranjan, Ashish.
Afiliação
  • Sahoo K; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
  • Karumuri S; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
  • Hikkaduwa Koralege RS; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
  • Flynn NH; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
  • Hartson S; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
  • Liu J; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
  • Ramsey JD; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
  • Kalkan AK; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
  • Pope C; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
  • Ranjan A; Department of Physiological Sciences, ‡School of Mechanical and Aerospace Engineering, §School of Chemical Engineering, and ∥Department of Biochemistry and Molecular Biology, Center for Veterinary Health Sciences, Oklahoma State University , Stillwater, Oklahoma 74078, United States.
Mol Pharm ; 14(7): 2224-2235, 2017 07 03.
Article em En | MEDLINE | ID: mdl-28505457
Red blood cells (RBCs) express a variety of immunomodulatory markers that enable the body to recognize them as self. We have shown that RBC membrane glycophorin A (GPA) receptor can mediate membrane attachment of protein therapeutics. A critical knowledge gap is whether attaching drug-encapsulated nanoparticles (NPs) to GPA and modification with cell-penetrating peptide (CPP) will impact binding, oxygenation, and the induction of cellular stress. The objective of this study was to formulate copolymer-based NPs containing model fluorescent-tagged bovine serum albumin (BSA) with GPA-specific targeting ligands such as ERY1 (ENPs), single-chain variable antibody (scFv TER-119, SNPs), and low-molecular-weight protamine-based CPP (LNPs) and to determine their biocompatibility using a variety of complementary high-throughput in vitro assays. Experiments were conducted by coincubating NPs with RBCs at body temperature, and biocompatibility was evaluated by Raman spectroscopy, hemolysis, complement lysis, and oxidative stress assays. Data suggested that LNPs effectively targeted RBCs, conferring 2-fold greater uptake in RBCs compared to ENPs and SNPs. Raman spectroscopy results indicated no adverse effect of NP attachment or internalization on the oxygenation status of RBCs. Cellular stress markers such as glutathione, malondialdehyde, and catalase were within normal limits, and complement-mediated lysis due to NPs was negligible in RBCs. Under the conditions tested, our data demonstrates that molecular targeting of the RBC membrane is a feasible translational strategy for improving drug pharmacokinetics and that the proposed high-throughput assays can prescreen diverse NPs for preclinical and clinical biocompatibility.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Nanopartículas / Peptídeos Penetradores de Células Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Mol Pharm Assunto da revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Polímeros / Nanopartículas / Peptídeos Penetradores de Células Tipo de estudo: Prognostic_studies Limite: Animals Idioma: En Revista: Mol Pharm Assunto da revista: BIOLOGIA MOLECULAR / FARMACIA / FARMACOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos