Your browser doesn't support javascript.
loading
De novo transcriptome analysis and glucosinolate profiling in watercress (Nasturtium officinale R. Br.).
Jeon, Jin; Bong, Sun Ju; Park, Jong Seok; Park, Young-Kyu; Arasu, Mariadhas Valan; Al-Dhabi, Naif Abdullah; Park, Sang Un.
Afiliação
  • Jeon J; Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
  • Bong SJ; Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
  • Park JS; Department of Horticulture, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea.
  • Park YK; LAS Inc., 16 Arayuk-ro, Gimpo City, 10136, Korea.
  • Arasu MV; Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
  • Al-Dhabi NA; Department of Botany and Microbiology, Addiriyah Chair for Environmental Studies, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia.
  • Park SU; Department of Crop Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Korea. supark@cnu.ac.kr.
BMC Genomics ; 18(1): 401, 2017 05 23.
Article em En | MEDLINE | ID: mdl-28535746
ABSTRACT

BACKGROUND:

Watercress (Nasturtium officinale R. Br.) is an aquatic herb species that is a rich source of secondary metabolites such as glucosinolates. Among these glucosinolates, watercress contains high amounts of gluconasturtiin (2-phenethyl glucosinolate) and its hydrolysis product, 2-phennethyl isothiocyanate, which plays a role in suppressing tumor growth. However, the use of N. officinale as a source of herbal medicines is currently limited due to insufficient genomic and physiological information.

RESULTS:

To acquire precise information on glucosinolate biosynthesis in N. officinale, we performed a comprehensive analysis of the transcriptome and metabolome of different organs of N. officinale. Transcriptome analysis of N. officinale seedlings yielded 69,570,892 raw reads. These reads were assembled into 69,635 transcripts, 64,876 of which were annotated to transcripts in public databases. On the basis of the functional annotation of N. officinale, we identified 33 candidate genes encoding enzymes related to glucosinolate biosynthetic pathways and analyzed the expression of these genes in the leaves, stems, roots, flowers, and seeds of N. officinale. The expression of NoMYB28 and NoMYB29, the main regulators of aliphatic glucosinolate biosynthesis, was highest in the stems, whereas the key regulators of indolic glucosinolate biosynthesis, such as NoDof1.1, NoMYB34, NoMYB51, and NoMYB122, were strongly expressed in the roots. Most glucosinolate biosynthetic genes were highly expressed in the flowers. HPLC analysis enabled us to detect eight glucosinolates in the different organs of N. officinale. Among these glucosinolates, the level of gluconasturtiin was considerably higher than any other glucosinolate in individual organs, and the amount of total glucosinolates was highest in the flower.

CONCLUSIONS:

This study has enhanced our understanding of functional genomics of N. officinale, including the glucosinolate biosynthetic pathways of this plant. Ultimately, our data will be helpful for further research on watercress bio-engineering and better strategies for exploiting its anti-carcinogenic properties.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Nasturtium / Glucosinolatos Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Perfilação da Expressão Gênica / Nasturtium / Glucosinolatos Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2017 Tipo de documento: Article