Your browser doesn't support javascript.
loading
Material Properties of Human Ocular Tissue at 7-µm Resolution.
Rohrbach, Daniel; Ito, Kazuyo; Lloyd, Harriet O; Silverman, Ronald H; Yoshida, Kenji; Yamaguchi, Tadashi; Mamou, Jonathan.
Afiliação
  • Rohrbach D; 1 Riverside Research, New York, NY, USA.
  • Ito K; 2 Chiba University, Chiba, Japan.
  • Lloyd HO; 3 Columbia University Medical Center, New York, NY, USA.
  • Silverman RH; 3 Columbia University Medical Center, New York, NY, USA.
  • Yoshida K; 2 Chiba University, Chiba, Japan.
  • Yamaguchi T; 2 Chiba University, Chiba, Japan.
  • Mamou J; 1 Riverside Research, New York, NY, USA.
Ultrason Imaging ; 39(5): 313-325, 2017 09.
Article em En | MEDLINE | ID: mdl-28675987
ABSTRACT
Quantitative assessment of the material properties of ocular tissues can provide valuable information for investigating several ophthalmic diseases. Quantitative acoustic microscopy (QAM) offers a means of obtaining such information, but few QAM investigations have been conducted on human ocular tissue. We imaged the optic nerve (ON) and iridocorneal angle in 12-µm deparaffinized sections of the human eye using a custom-built acoustic microscope with a 250-MHz transducer (7-µm lateral resolution). The two-dimensional QAM maps of ultrasound attenuation (α), speed of sound ( c), acoustic impedance ( Z), bulk modulus ( K), and mass density (ρ) were generated. Scanned samples were then stained and imaged by light microscopy for comparison with QAM maps. The spatial resolution and contrast of scanning acoustic microscopy (SAM) maps were sufficient to resolve anatomic layers of the retina (Re); anatomic features in SAM maps corresponded to those seen by light microscopy. Significant variations of the acoustic parameters were found. For example, the sclera was 220 MPa stiffer than Re, choroid, and ON tissue. To the authors' knowledge, this is the first systematic study to assess c, Z, K, ρ, and α of human ocular tissue at the high ultrasound frequencies used in this study.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microscopia Acústica / Olho Limite: Humans Idioma: En Revista: Ultrason Imaging Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Microscopia Acústica / Olho Limite: Humans Idioma: En Revista: Ultrason Imaging Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos