Your browser doesn't support javascript.
loading
Multienzyme Biosynthesis of Dihydroartemisinic Acid.
Chen, Xixian; Zhang, Congqiang; Too, Heng-Phon.
Afiliação
  • Chen X; Biotransformation Innovation Platform, Agency for Science Technology and Research, Singapore 138673, Singapore. xixian_chen@biotrans.a-star.edu.sg.
  • Zhang C; Department of Biochemistry, National University of Singapore, Singapore 117598, Singapore. xixian_chen@biotrans.a-star.edu.sg.
  • Too HP; Biotransformation Innovation Platform, Agency for Science Technology and Research, Singapore 138673, Singapore. congqiang_zhang@biotrans.a-star.edu.sg.
Molecules ; 22(9)2017 Aug 28.
Article em En | MEDLINE | ID: mdl-28846664
One-pot multienzyme biosynthesis is an attractive method for producing complex, chiral bioactive compounds. It is advantageous over step-by-step synthesis, as it simplifies the process, reduces costs and often leads to higher yield due to the synergistic effects of enzymatic reactions. In this study, dihydroartemisinic acid (DHAA) pathway enzymes were overexpressed in Saccharomyces cerevisiae, and whole-cell biotransformation of amorpha-4,11-diene (AD) to DHAA was demonstrated. The first oxidation step by cytochrome P450 (CYP71AV1) is the main rate-limiting step, and a series of N-terminal truncation and transcriptional tuning improved the enzymatic activity. With the co-expression of artemisinic aldehyde dehydrogenase (ALDH1), which recycles NADPH, a significant 8-fold enhancement of DHAA production was observed. Subsequently, abiotic conditions were optimized to further enhance the productivity of the whole-cell biocatalysts. Collectively, approximately 230 mg/L DHAA was produced by the multi-step whole-cell reaction, a ~50% conversion from AD. This study illustrates the feasibility of producing bioactive compounds by in vitro one-pot multienzyme reactions.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas Fúngicas / Artemisininas Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Singapura

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Saccharomyces cerevisiae / Proteínas Fúngicas / Artemisininas Idioma: En Revista: Molecules Assunto da revista: BIOLOGIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Singapura