Your browser doesn't support javascript.
loading
Myristoylation of Src kinase mediates Src-induced and high-fat diet-accelerated prostate tumor progression in mice.
Kim, Sungjin; Yang, Xiangkun; Li, Qianjin; Wu, Meng; Costyn, Leah; Beharry, Zanna; Bartlett, Michael G; Cai, Houjian.
Afiliação
  • Kim S; From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and.
  • Yang X; From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and.
  • Li Q; From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and.
  • Wu M; From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and.
  • Costyn L; From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and.
  • Beharry Z; the Department of Chemistry and Physics, Florida Gulf Coast University, Fort Myers, Florida 33965.
  • Bartlett MG; From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and.
  • Cai H; From the Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, Georgia 30602 and caihj@uga.edu.
J Biol Chem ; 292(45): 18422-18433, 2017 11 10.
Article em En | MEDLINE | ID: mdl-28939770
ABSTRACT
Exogenous fatty acids provide substrates for energy production and biogenesis of the cytoplasmic membrane, but they also enhance cellular signaling during cancer cell proliferation. However, it remains controversial whether dietary fatty acids are correlated with tumor progression. In this study, we demonstrate that increased Src kinase activity is associated with high-fat diet-accelerated progression of prostate tumors and that Src kinases mediate this pathological process. Moreover, in the in vivo prostate regeneration assay, host SCID mice carrying Src(Y529F)-transduced regeneration tissues were fed a low-fat diet or a high-fat diet and treated with vehicle or dasatinib. The high-fat diet not only accelerated Src-induced prostate tumorigenesis in mice but also compromised the inhibitory effect of the anticancer drug dasatinib on Src kinase oncogenic potential in vivo We further show that myristoylation of Src kinase is essential to facilitate Src-induced and high-fat diet-accelerated tumor progression. Mechanistically, metabolism of exogenous myristic acid increased the biosynthesis of myristoyl CoA and myristoylated Src and promoted Src kinase-mediated oncogenic signaling in human cells. Of the fatty acids tested, only exogenous myristic acid contributed to increased intracellular myristoyl CoA levels. Our results suggest that targeting Src kinase myristoylation, which is required for Src kinase association at the cellular membrane, blocks dietary fat-accelerated tumorigenesis in vivo Our findings uncover the molecular basis of how the metabolism of myristic acid stimulates high-fat diet-mediated prostate tumor progression.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Próstata / Neoplasias da Próstata / Processamento de Proteína Pós-Traducional / Proteínas Proto-Oncogênicas pp60(c-src) / Quinases da Família src / Dieta Hiperlipídica / Antineoplásicos Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: J Biol Chem Ano de publicação: 2017 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Próstata / Neoplasias da Próstata / Processamento de Proteína Pós-Traducional / Proteínas Proto-Oncogênicas pp60(c-src) / Quinases da Família src / Dieta Hiperlipídica / Antineoplásicos Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Humans / Male Idioma: En Revista: J Biol Chem Ano de publicação: 2017 Tipo de documento: Article