The DNA Repair Inhibitor Dbait Is Specific for Malignant Hematologic Cells in Blood.
Mol Cancer Ther
; 16(12): 2817-2827, 2017 Dec.
Article
em En
| MEDLINE
| ID: mdl-28947503
Hematologic malignancies are rare cancers that develop refractory disease upon patient relapse, resulting in decreased life expectancy and quality of life. DNA repair inhibitors are a promising strategy to treat cancer but are limited by their hematologic toxicity in combination with conventional chemotherapies. Dbait are large molecules targeting the signaling of DNA damage and inhibiting all the double-strand DNA break pathways. Dbait have been shown to sensitize resistant solid tumors to radiotherapy and platinum salts. Here, we analyze the efficacy and lack of toxicity of AsiDNA, a cholesterol form of Dbait, in hematologic malignancies. We show that AsiDNA enters cells via LDL receptors and activates its molecular target, the DNA dependent protein kinase (DNA-PKcs) in 10 lymphoma and leukemia cell lines (Jurkat-E6.1, MT-4, MOLT-4, 174xCEM.T2, Sup-T1, HuT-78, Raji, IM-9, THP-1, and U-937) and in normal primary human PBMCs, resting or activated T cells, and CD34+ progenitors. The treatment with AsiDNA induced necrotic and mitotic cell death in most cancer cell lines and had no effect on blood or bone marrow cells, including immune activation, proliferation, or differentiation. Sensitivity to AsiDNA was independent of p53 status. Survival to combined treatment with conventional therapies (etoposide, cyclophosphamides, vincristine, or radiotherapy) was analyzed by isobolograms and combination index. AsiDNA synergized with all treatments, except vincristine, without increasing their toxicity to normal blood cells. AsiDNA is a novel, potent, and wide-range drug with the potential to specifically increase DNA-damaging treatment toxicity in tumor without adding toxicity in normal hematologic cells or inducing immune dysregulation. Mol Cancer Ther; 16(12); 2817-27. ©2017 AACR.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Hematológicas
/
Reparo do DNA
Limite:
Humans
Idioma:
En
Revista:
Mol Cancer Ther
Assunto da revista:
ANTINEOPLASICOS
Ano de publicação:
2017
Tipo de documento:
Article
País de afiliação:
França