Photonic microwave time delay using slow- and fast-light effects in optically injected semiconductor lasers.
Opt Lett
; 42(17): 3307-3310, 2017 Sep 01.
Article
em En
| MEDLINE
| ID: mdl-28957090
This study numerically and experimentally investigates a photonic approach for microwave time delay, which takes advantage of the redshift of the laser cavity resonance induced by external optical injection in a semiconductor laser. The strong enhancement around the redshifted cavity resonance not only amplifies the power, but also shifts the phase of the microwave signals carried by the optical injection. Such a microwave phase shift is approximately linear over a few gigahertz, leading to a constant microwave time delay over the frequency range. A different time delay can be achieved by simply adjusting the injection power or frequency. For the microwave frequencies up to 40 GHz investigated in this Letter, a continuously tunable range of more than 80 ps in time delay is achieved over an instantaneous bandwidth of approximately 7 GHz. The quality of the data carried by the microwave signals is mostly preserved after time delay. Thus, a bit-error ratio down to 10-9 at 2.5 Gb/s is achieved with a possible detection sensitivity improvement of 5 dB.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Opt Lett
Ano de publicação:
2017
Tipo de documento:
Article