Your browser doesn't support javascript.
loading
C9orf72 poly GA RAN-translated protein plays a key role in amyotrophic lateral sclerosis via aggregation and toxicity.
Lee, Youn-Bok; Baskaran, Pranetha; Gomez-Deza, Jorge; Chen, Han-Jou; Nishimura, Agnes L; Smith, Bradley N; Troakes, Claire; Adachi, Yoshitsugu; Stepto, Alan; Petrucelli, Leonard; Gallo, Jean-Marc; Hirth, Frank; Rogelj, Boris; Guthrie, Sarah; Shaw, Christopher E.
Afiliação
  • Lee YB; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Baskaran P; Department of Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK.
  • Gomez-Deza J; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Chen HJ; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Nishimura AL; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Smith BN; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Troakes C; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Adachi Y; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Stepto A; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Petrucelli L; Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA.
  • Gallo JM; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Hirth F; United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Camberwell, London SE5 9NU, UK.
  • Rogelj B; Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia.
  • Guthrie S; Department of Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK.
  • Shaw CE; School of Life Sciences, University of Sussex, JMS Building, Falmer Campus, Brighton, BN7 9QG UK.
Hum Mol Genet ; 26(24): 4765-4777, 2017 12 15.
Article em En | MEDLINE | ID: mdl-28973350
ABSTRACT
An intronic GGGGCC (G4C2) hexanucleotide repeat expansion inC9orf72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Repeat-associated non-AUG (RAN) translation of G4C2 RNA can result in five different dipeptide repeat proteins (DPR poly GA, poly GP, poly GR, poly PA, and poly PR), which aggregate into neuronal cytoplasmic and nuclear inclusions in affected patients, however their contribution to disease pathogenesis remains controversial. We show that among the DPR proteins, expression of poly GA in a cell culture model activates programmed cell death and TDP-43 cleavage in a dose-dependent manner. Dual expression of poly GA together with other DPRs revealed that poly GP and poly PA are sequestered by poly GA, whereas poly GR and poly PR are rarely co-localised with poly GA. Dual expression of poly GA and poly PA ameliorated poly GA toxicity by inhibiting poly GA aggregation both in vitro and in vivo in the chick embryonic spinal cord. Expression of alternative codon-derived DPRs in chick embryonic spinal cord confirmed in vitro data, revealing that each of the dipeptides caused toxicity, with poly GA being the most toxic. Further, in vivo expression of G4C2 repeats of varying length caused apoptotic cell death, but failed to generate DPRs. Together, these data demonstrate that C9-related toxicity can be mediated by either RNA or DPRs. Moreover, our findings provide evidence that poly GA is a key mediator of cytotoxicity and that cross-talk between DPR proteins likely modifies their pathogenic status in C9ALS/FTD.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteína C9orf72 / Esclerose Lateral Amiotrófica Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Hum Mol Genet Assunto da revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Proteína C9orf72 / Esclerose Lateral Amiotrófica Tipo de estudo: Prognostic_studies Limite: Animals / Humans Idioma: En Revista: Hum Mol Genet Assunto da revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Reino Unido