Your browser doesn't support javascript.
loading
Age-related gene expression in luminal epithelial cells is driven by a microenvironment made from myoepithelial cells.
Miyano, Masaru; Sayaman, Rosalyn W; Stoiber, Marcus H; Lin, Chun-Han; Stampfer, Martha R; Brown, James B; LaBarge, Mark A.
Afiliação
  • Miyano M; Department of Population Sciences, City of Hope, Duarte, CA, 91010, USA.
  • Sayaman RW; Department of Population Sciences, City of Hope, Duarte, CA, 91010, USA.
  • Stoiber MH; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Lin CH; Envrionmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Stampfer MR; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • Brown JB; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
  • LaBarge MA; Envrionmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Aging (Albany NY) ; 9(10): 2026-2051, 2017 10 09.
Article em En | MEDLINE | ID: mdl-29016359
ABSTRACT
Luminal epithelial cells in the breast gradually alter gene and protein expression with age, appearing to lose lineage-specificity by acquiring myoepithelial-like characteristics. We hypothesize that the luminal lineage is particularly sensitive to microenvironment changes, and age-related microenvironment changes cause altered luminal cell phenotypes. To evaluate the effects of different microenvironments on the fidelity of epigenetically regulated luminal and myoepithelial gene expression, we generated a set of lineage-specific probes for genes that are controlled through DNA methylation. Culturing primary luminal cells under conditions that favor myoepithelial propogation led to their reprogramming at the level of gene methylation, and to a more myoepithelial-like expression profile. Primary luminal cells' lineage-specific gene expression could be maintained when they were cultured as bilayers with primary myoepithelial cells. Isogenic stromal fibroblast co-cultures were unable to maintain the luminal phenotype. Mixed-age luminal-myoepithelial bilayers revealed that luminal cells adopt transcription and methylation patterns consistent with the chronological age of the myoepithelial cells. We provide evidence that the luminal epithelial phenotype is exquisitely sensitive to microenvironment conditions, and that states of aging are cell non-autonomously communicated through microenvironment cues over at least one cell diameter.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mama / Envelhecimento / Células Epiteliais / Microambiente Celular Limite: Female / Humans Idioma: En Revista: Aging (Albany NY) Assunto da revista: GERIATRIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Mama / Envelhecimento / Células Epiteliais / Microambiente Celular Limite: Female / Humans Idioma: En Revista: Aging (Albany NY) Assunto da revista: GERIATRIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos