Your browser doesn't support javascript.
loading
A kilonova as the electromagnetic counterpart to a gravitational-wave source.
Smartt, S J; Chen, T-W; Jerkstrand, A; Coughlin, M; Kankare, E; Sim, S A; Fraser, M; Inserra, C; Maguire, K; Chambers, K C; Huber, M E; Krühler, T; Leloudas, G; Magee, M; Shingles, L J; Smith, K W; Young, D R; Tonry, J; Kotak, R; Gal-Yam, A; Lyman, J D; Homan, D S; Agliozzo, C; Anderson, J P; Angus, C R; Ashall, C; Barbarino, C; Bauer, F E; Berton, M; Botticella, M T; Bulla, M; Bulger, J; Cannizzaro, G; Cano, Z; Cartier, R; Cikota, A; Clark, P; De Cia, A; Della Valle, M; Denneau, L; Dennefeld, M; Dessart, L; Dimitriadis, G; Elias-Rosa, N; Firth, R E; Flewelling, H; Flörs, A; Franckowiak, A; Frohmaier, C; Galbany, L.
Afiliação
  • Smartt SJ; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Chen TW; Max-Planck-Institut für Extraterrestrische Physik, Giessenbach-Strasse 1, D-85748 Garching, Munich, Germany.
  • Jerkstrand A; Max-Planck Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85748 Garching, Munich, Germany.
  • Coughlin M; LIGO Laboratory West Bridge, Room 257 California Institute of Technology, MC 100-36, Pasadena, California 91125, USA.
  • Kankare E; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Sim SA; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Fraser M; School of Physics, O'Brien Centre for Science North, University College Dublin, Belfield, Dublin 4, Ireland.
  • Inserra C; Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK.
  • Maguire K; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Chambers KC; Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA.
  • Huber ME; Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA.
  • Krühler T; Max-Planck-Institut für Extraterrestrische Physik, Giessenbach-Strasse 1, D-85748 Garching, Munich, Germany.
  • Leloudas G; Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, 2100 Copenhagen Ø, Denmark.
  • Magee M; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Shingles LJ; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Smith KW; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Young DR; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Tonry J; Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA.
  • Kotak R; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Gal-Yam A; Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100, Israel.
  • Lyman JD; Department of Physics, University of Warwick, Coventry CV4 7AL, UK.
  • Homan DS; Institute for Astronomy, SUPA (Scottish Universities Physics Alliance), University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh EH9 3HJ, UK.
  • Agliozzo C; Departamento de Ciencias Fisicas, Universidad Andres Bello, Avenida de Republica 252, Santiago, Chile.
  • Anderson JP; Millennium Institute of Astrophysics (MAS), Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile.
  • Angus CR; European Southern Observatory, Alonso de Córdova 3107, Casilla 19, Santiago, Chile.
  • Ashall C; Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK.
  • Barbarino C; Astrophysics Research Institute, Liverpool John Moores University, IC2, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK.
  • Bauer FE; The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 10691 Stockholm, Sweden.
  • Berton M; Millennium Institute of Astrophysics (MAS), Nuncio Monseñor Sótero Sanz 100, Providencia, Santiago, Chile.
  • Botticella MT; Instituto de Astrofísica and Centro de Astroingeniería, Facultad de Física, Pontificia Universidad Católica de Chile, Casilla 306, Santiago 22, Chile.
  • Bulla M; Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, Colorado 80301, USA.
  • Bulger J; Dipartimento di Fisica e Astronomia 'G. Galilei', Università di Padova, Vicolo dell'Osservatorio 3, 35122 Padova, Italy.
  • Cannizzaro G; INAF - Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate, Italy.
  • Cano Z; INAF - Osservatorio Astronomico di Capodimonte, via Salita Moiariello 16, 80131 Napoli, Italy.
  • Cartier R; The Oskar Klein Centre, Department of Physics, Stockholm University, AlbaNova, 10691 Stockholm, Sweden.
  • Cikota A; Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA.
  • Clark P; SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, NL-3584 CA Utrecht, The Netherlands.
  • De Cia A; Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, The Netherlands.
  • Della Valle M; Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía, E-18008 Granada, Spain.
  • Denneau L; Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK.
  • Dennefeld M; European Southern Observatory, Karl-Schwarzschild Strasse 2, 85748 Garching bei München, Germany.
  • Dessart L; Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK.
  • Dimitriadis G; European Southern Observatory, Karl-Schwarzschild Strasse 2, 85748 Garching bei München, Germany.
  • Elias-Rosa N; INAF - Osservatorio Astronomico di Capodimonte, via Salita Moiariello 16, 80131 Napoli, Italy.
  • Firth RE; ICRANet-Pescara, Piazza della Repubblica 10, I-65122 Pescara, Italy.
  • Flewelling H; Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, Hawaii 96822, USA.
  • Flörs A; IAP/CNRS and University Pierre et Marie Curie, Paris, France.
  • Franckowiak A; Unidad Mixta Internacional Franco-Chilena de Astronomía (CNRS UMI 3386), Departamento de Astronomía, Universidad de Chile, Camino El Observatorio 1515, Las Condes, Santiago, Chile.
  • Frohmaier C; Department of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK.
  • Galbany L; Istituto Nazionale di Astrofisica, Viale del Parco Mellini 84, I-00136 Roma, Italy.
Nature ; 551(7678): 75-79, 2017 11 02.
Article em En | MEDLINE | ID: mdl-29094693
ABSTRACT
Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Nature Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Reino Unido