Extending existing structural identifiability analysis methods to mixed-effects models.
Math Biosci
; 295: 1-10, 2018 01.
Article
em En
| MEDLINE
| ID: mdl-29107004
The concept of structural identifiability for state-space models is expanded to cover mixed-effects state-space models. Two methods applicable for the analytical study of the structural identifiability of mixed-effects models are presented. The two methods are based on previously established techniques for non-mixed-effects models; namely the Taylor series expansion and the input-output form approach. By generating an exhaustive summary, and by assuming an infinite number of subjects, functions of random variables can be derived which in turn determine the distribution of the system's observation function(s). By considering the uniqueness of the analytical statistical moments of the derived functions of the random variables, the structural identifiability of the corresponding mixed-effects model can be determined. The two methods are applied to a set of examples of mixed-effects models to illustrate how they work in practice.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Modelos Estatísticos
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Revista:
Math Biosci
Ano de publicação:
2018
Tipo de documento:
Article