Your browser doesn't support javascript.
loading
Comparative proteomics illustrates the molecular mechanism of potato (Solanum tuberosum L.) tuberization inhibited by exogenous gibberellins in vitro.
Cheng, Lixiang; Wang, Yuping; Liu, Yueshan; Zhang, Qingquan; Gao, Huihui; Zhang, Feng.
Afiliação
  • Cheng L; College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.
  • Wang Y; College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.
  • Liu Y; College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.
  • Zhang Q; College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.
  • Gao H; College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.
  • Zhang F; College of Agronomy, Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Improvement & Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China.
Physiol Plant ; 163(1): 103-123, 2018 May.
Article em En | MEDLINE | ID: mdl-29135031
ABSTRACT
Among the multiple environmental signals and hormonal factors regulating potato tuberization, gibberellins (GAs) are important components of the signaling pathways in these processes. To understand the GAs-signaling response mechanism of potato tuberization, a comparative proteomics approach was applied to analyze proteome change of potato tuberization in vitro subjected to a range of exogenous GA3 treatments (0, 0.01, 0.1 and 1.0 µM) using two-dimensional gel electrophoresis. Quantitative image analyses showed that a total of 37 protein spots have their abundance significantly altered more than 2-fold. Among these proteins, 13 proteins were up-regulated, 13 proteins were down-regulated, one protein was absent and 10 proteins were induced after treatment by exogenous GA3 . The MALDI-TOF/TOF MS analyses led to the identification of differentially abundant proteins that are mainly involved in bioenergy and metabolism, storage, signaling, cell defense and rescue, transcription, chaperones, transport. Furthermore, the comparative analysis of GA3 -responsive proteome allowed for general elucidation of underlying molecular mechanisms of potato tuberization inhibited by exogenous GA3 . Most of these cellular processes were not conducive to the transition from stolon elongation to tuber formation, including a blockage of starch and storage protein accumulation, the accelerated carbohydrate catabolism, a blockage of JA biosynthesis but an elevated endogenous GAs level, the amplification of GA3 signal transduction by other signaling pathways, and the regulation of cellular RNA metabolism for controlling tuberization. Our results firstly integrated physiology and proteome data to provide new insights into GA3 -signaling response mechanisms of potato tuberization in vitro.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Proteínas de Plantas / Solanum tuberosum / Regulação da Expressão Gênica de Plantas / Proteoma / Giberelinas Tipo de estudo: Prognostic_studies Idioma: En Revista: Physiol Plant Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Reguladores de Crescimento de Plantas / Proteínas de Plantas / Solanum tuberosum / Regulação da Expressão Gênica de Plantas / Proteoma / Giberelinas Tipo de estudo: Prognostic_studies Idioma: En Revista: Physiol Plant Ano de publicação: 2018 Tipo de documento: Article País de afiliação: China