Your browser doesn't support javascript.
loading
Grain growth prediction based on data assimilation by implementing 4DVar on multi-phase-field model.
Ito, Shin-Ichi; Nagao, Hiromichi; Kasuya, Tadashi; Inoue, Junya.
Afiliação
  • Ito SI; Earthquake Research Institute, The University of Tokyo, Tokyo, Japan.
  • Nagao H; Earthquake Research Institute, The University of Tokyo, Tokyo, Japan.
  • Kasuya T; Graduate School of Information Science and Technology, The University of Tokyo, Tokyo, Japan.
  • Inoue J; Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
Sci Technol Adv Mater ; 18(1): 857-869, 2017.
Article em En | MEDLINE | ID: mdl-29152018
We propose a method to predict grain growth based on data assimilation by using a four-dimensional variational method (4DVar). When implemented on a multi-phase-field model, the proposed method allows us to calculate the predicted grain structures and uncertainties in them that depend on the quality and quantity of the observational data. We confirm through numerical tests involving synthetic data that the proposed method correctly reproduces the true phase-field assumed in advance. Furthermore, it successfully quantifies uncertainties in the predicted grain structures, where such uncertainty quantifications provide valuable information to optimize the experimental design.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Technol Adv Mater Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Japão

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Technol Adv Mater Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Japão