Your browser doesn't support javascript.
loading
A ferroelectric liquid crystal confined in cylindrical nanopores: reversible smectic layer buckling, enhanced light rotation and extremely fast electro-optically active Goldstone excitations.
Busch, Mark; Kityk, Andriy V; Piecek, Wiktor; Hofmann, Tommy; Wallacher, Dirk; Calus, Sylwia; Kula, Przemyslaw; Steinhart, Martin; Eich, Manfred; Huber, Patrick.
Afiliação
  • Busch M; Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany. patrick.huber@tuhh.de.
  • Kityk AV; Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany. patrick.huber@tuhh.de and Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland. andriy.kityk@univie.ac.at.
  • Piecek W; Military University of Technology, 00-908 Warsaw, Poland.
  • Hofmann T; Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany.
  • Wallacher D; Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany.
  • Calus S; Faculty of Electrical Engineering, Czestochowa University of Technology, 42-200 Czestochowa, Poland. andriy.kityk@univie.ac.at.
  • Kula P; Military University of Technology, 00-908 Warsaw, Poland.
  • Steinhart M; Institute for the Chemistry of New Materials, University Osnabrück, 49067 Osnabrück, Germany.
  • Eich M; Institute of Optical and Electronic Materials, Hamburg University of Technology, 21073 Hamburg, Germany and Institute of Materials Research, Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany.
  • Huber P; Institute of Materials Physics and Technology, Hamburg University of Technology, 21073 Hamburg, Germany. patrick.huber@tuhh.de.
Nanoscale ; 9(48): 19086-19099, 2017 Dec 14.
Article em En | MEDLINE | ID: mdl-29199756
The orientational and translational order of a thermotropic ferroelectric liquid crystal (2MBOCBC) imbibed in self-organized, parallel, cylindrical pores with radii of 10, 15, or 20 nm in anodic aluminium oxide monoliths (AAO) are explored by high-resolution linear and circular optical birefringence as well as neutron diffraction texture analysis. The results are compared to experiments on the bulk system. The native oxidic pore walls do not provide a stable smectogen wall anchoring. By contrast, a polymeric wall grafting enforcing planar molecular anchoring results in a thermal-history independent formation of smectic C* helices and a reversible chevron-like layer buckling. An enhancement of the optical rotatory power by up to one order of magnitude of the confined compared to the bulk liquid crystal is traced to the pretransitional formation of helical structures at the smectic-A*-to-smectic-C* transformation. A linear electro-optical birefringence effect evidences collective fluctuations in the molecular tilt vector direction along the confined helical superstructures, i.e. the Goldstone phason excitations typical of the para-to-ferroelectric transition. Their relaxation frequencies increase with the square of the inverse pore radii as characteristic of plane-wave excitations and are two orders of magnitude larger than in the bulk, evidencing an exceptionally fast electro-optical functionality of the liquid-crystalline-AAO nanohybrids.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Nanoscale Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Alemanha