Your browser doesn't support javascript.
loading
Effect of conductance linearity and multi-level cell characteristics of TaOx-based synapse device on pattern recognition accuracy of neuromorphic system.
Sung, Changhyuck; Lim, Seokjae; Kim, Hyungjun; Kim, Taesu; Moon, Kibong; Song, Jeonghwan; Kim, Jae-Joon; Hwang, Hyunsang.
Afiliação
  • Sung C; Department of Material Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, Republic of Korea.
Nanotechnology ; 29(11): 115203, 2018 Mar 16.
Article em En | MEDLINE | ID: mdl-29328054
ABSTRACT
To improve the classification accuracy of an image data set (CIFAR-10) by using analog input voltage, synapse devices with excellent conductance linearity (CL) and multi-level cell (MLC) characteristics are required. We analyze the CL and MLC characteristics of TaOx-based filamentary resistive random access memory (RRAM) to implement the synapse device in neural network hardware. Our findings show that the number of oxygen vacancies in the filament constriction region of the RRAM directly controls the CL and MLC characteristics. By adopting a Ta electrode (instead of Ti) and the hot-forming step, we could form a dense conductive filament. As a result, a wide range of conductance levels with CL is achieved and significantly improved image classification accuracy is confirmed.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxidos / Tantálio / Reconhecimento Automatizado de Padrão / Redes Neurais de Computação / Condutividade Elétrica Tipo de estudo: Prognostic_studies Idioma: En Revista: Nanotechnology Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Óxidos / Tantálio / Reconhecimento Automatizado de Padrão / Redes Neurais de Computação / Condutividade Elétrica Tipo de estudo: Prognostic_studies Idioma: En Revista: Nanotechnology Ano de publicação: 2018 Tipo de documento: Article