Your browser doesn't support javascript.
loading
Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems.
Muller-Karger, Frank E; Hestir, Erin; Ade, Christiana; Turpie, Kevin; Roberts, Dar A; Siegel, David; Miller, Robert J; Humm, David; Izenberg, Noam; Keller, Mary; Morgan, Frank; Frouin, Robert; Dekker, Arnold G; Gardner, Royal; Goodman, James; Schaeffer, Blake; Franz, Bryan A; Pahlevan, Nima; Mannino, Antonio G; Concha, Javier A; Ackleson, Steven G; Cavanaugh, Kyle C; Romanou, Anastasia; Tzortziou, Maria; Boss, Emmanuel S; Pavlick, Ryan; Freeman, Anthony; Rousseaux, Cecile S; Dunne, John; Long, Matthew C; Klein, Eduardo; McKinley, Galen A; Goes, Joachim; Letelier, Ricardo; Kavanaugh, Maria; Roffer, Mitchell; Bracher, Astrid; Arrigo, Kevin R; Dierssen, Heidi; Zhang, Xiaodong; Davis, Frank W; Best, Ben; Guralnick, Robert; Moisan, John; Sosik, Heidi M; Kudela, Raphael; Mouw, Colleen B; Barnard, Andrew H; Palacios, Sherry; Roesler, Collin.
Afiliação
  • Muller-Karger FE; College of Marine Science, University of South Florida, 140 7th Avenue South, Saint Petersburg, Florida, 33701, USA.
  • Hestir E; School of Engineering, University of California Merced, 5200 N. Lake Road, Merced, California, 95340, USA.
  • Ade C; School of Engineering, University of California Merced, 5200 N. Lake Road, Merced, California, 95340, USA.
  • Turpie K; Joint Center for Earth Systems Technology, University of Maryland, 5523 Research Park Drive, Baltimore, Maryland, 21228, USA.
  • Roberts DA; Department of Geography, University of Southern California, Santa Barbara, California, 93106, USA.
  • Siegel D; Department of Geography, University of Southern California, Santa Barbara, California, 93106, USA.
  • Miller RJ; Department of Geography, University of Southern California, Santa Barbara, California, 93106, USA.
  • Humm D; Applied Physics Lab, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, Maryland, 20723, USA.
  • Izenberg N; Applied Physics Lab, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, Maryland, 20723, USA.
  • Keller M; Applied Physics Lab, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, Maryland, 20723, USA.
  • Morgan F; Applied Physics Lab, Johns Hopkins University, 11100 Johns Hopkins Road, Laurel, Maryland, 20723, USA.
  • Frouin R; Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, 92093, USA.
  • Dekker AG; Commonwealth Scientific and Industrial Research Organisation, Canberra, Australian Capital Territory, Australia.
  • Gardner R; Stetson University College of Law, 1401 61st Street South, Gulfport, Florida, 33707, USA.
  • Goodman J; HySpeed Computing, Miami, Florida, 33143, USA.
  • Schaeffer B; U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, Raleigh, North Carolina, 27711, USA.
  • Franz BA; Ocean Ecology Laboratory, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, 20770, USA.
  • Pahlevan N; Ocean Ecology Laboratory, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, 20770, USA.
  • Mannino AG; Goddard Space Flight Center, Science Systems and Applications, Greenbelt, Maryland, 20770, USA.
  • Concha JA; Ocean Ecology Laboratory, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, 20770, USA.
  • Ackleson SG; Ocean Ecology Laboratory, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, 20770, USA.
  • Cavanaugh KC; Naval Research Laboratory, Washington, D.C., 20375, USA.
  • Romanou A; Department of Geography, University of California Los Angeles, Los Angeles, California, 90095, USA.
  • Tzortziou M; Goddard Institute for Space Studies, Columbia University, New York, New York, 10025, USA.
  • Boss ES; Ocean Ecology Laboratory, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, 20770, USA.
  • Pavlick R; City University of New York, New York, New York, 10031, USA.
  • Freeman A; School of Marine Sciences, University of Maine, Orono, Maine, 04469, USA.
  • Rousseaux CS; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA.
  • Dunne J; Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, 91109, USA.
  • Long MC; Universities Space Research Association, Goddard Space Flight Center, National Aeronautics and Space Administration, Greenbelt, Maryland, 20770, USA.
  • Klein E; NOAA Geophysical Fluid Dynamics Laboratory, Princeton, New Jersey, 08540, USA.
  • McKinley GA; Climate and Global Dynamics Laboratory, University Corporation for Atmospheric Research, Boulder, Colorado, 80301, USA.
  • Goes J; Laboratorio de Sensores Remotos, Universidad Simon Bolívar, Sartenejas, Apartado, Caracas, 89000, Venezuela.
  • Letelier R; Lamont Doherty Earth Observatory, Columbia University, Palisades, New York, 10964, USA.
  • Kavanaugh M; Lamont Doherty Earth Observatory, Columbia University, Palisades, New York, 10964, USA.
  • Roffer M; College of Oceanic and Atmospheric Science, Oregon State University, Corvallis, Oregon, 97331, USA.
  • Bracher A; College of Oceanic and Atmospheric Science, Oregon State University, Corvallis, Oregon, 97331, USA.
  • Arrigo KR; Roffer's Ocean Fishing Forecasting Service, 60 Westover Drive, West Melbourne, Florida, 32904, USA.
  • Dierssen H; Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
  • Zhang X; Stanford University, Stanford, California, 94305, USA.
  • Davis FW; Department of Marine Sciences, University of Connecticut, Groton, Connecticut, 06340, USA.
  • Best B; Earth System Science and Policy, University of North Dakota, Grand Forks, North Dakota, 58202, USA.
  • Guralnick R; Bren School of Environmental Science and Management, University of California, Santa Barbara, California, 93106, USA.
  • Moisan J; EcoQuants, 508 East Haley Street, Santa Barbara, California, 93103, USA.
  • Sosik HM; Florida Museum of Natural History, University of Florida, Cultural Plaza, 3215 Hull Road, Gainesville, Florida, 32611, USA.
  • Kudela R; Wallops Flight Facility, NASA Goddard Space Flight Center, Wallops Island, Virginia, 23337, USA.
  • Mouw CB; Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, 02543, USA.
  • Barnard AH; University of California Santa Cruz, Santa Cruz, California, 95064, USA.
  • Palacios S; Graduate School of Oceanography, University of Rhode Island, Kingston, Rhode Island, 02881, USA.
  • Roesler C; WET Labs/Sea-Bird Scientific, P.O. Box 518, Philomath, Oregon, 97370, USA.
Ecol Appl ; 28(3): 749-760, 2018 04.
Article em En | MEDLINE | ID: mdl-29509310
ABSTRACT
The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a small fraction of these areas. Satellite-based sensors can repeatedly record the visible and near-infrared reflectance spectra that contain the absorption, scattering, and fluorescence signatures of functional phytoplankton groups, colored dissolved matter, and particulate matter near the surface ocean, and of biologically structured habitats (floating and emergent vegetation, benthic habitats like coral, seagrass, and algae). These measures can be incorporated into Essential Biodiversity Variables (EBVs), including the distribution, abundance, and traits of groups of species populations, and used to evaluate habitat fragmentation. However, current and planned satellites are not designed to observe the EBVs that change rapidly with extreme tides, salinity, temperatures, storms, pollution, or physical habitat destruction over scales relevant to human activity. Making these observations requires a new generation of satellite sensors able to sample with these combined characteristics (1) spatial resolution on the order of 30 to 100-m pixels or smaller; (2) spectral resolution on the order of 5 nm in the visible and 10 nm in the short-wave infrared spectrum (or at least two or more bands at 1,030, 1,240, 1,630, 2,125, and/or 2,260 nm) for atmospheric correction and aquatic and vegetation assessments; (3) radiometric quality with signal to noise ratios (SNR) above 800 (relative to signal levels typical of the open ocean), 14-bit digitization, absolute radiometric calibration <2%, relative calibration of 0.2%, polarization sensitivity <1%, high radiometric stability and linearity, and operations designed to minimize sunglint; and (4) temporal resolution of hours to days. We refer to these combined specifications as H4 imaging. Enabling H4 imaging is vital for the conservation and management of global biodiversity and ecosystem services, including food provisioning and water security. An agile satellite in a 3-d repeat low-Earth orbit could sample 30-km swath images of several hundred coastal habitats daily. Nine H4 satellites would provide weekly coverage of global coastal zones. Such satellite constellations are now feasible and are used in various applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biodiversidade / Tecnologia de Sensoriamento Remoto Tipo de estudo: Qualitative_research Idioma: En Revista: Ecol Appl Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biodiversidade / Tecnologia de Sensoriamento Remoto Tipo de estudo: Qualitative_research Idioma: En Revista: Ecol Appl Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos