Your browser doesn't support javascript.
loading
Discovery of Causal Models that Contain Latent Variables through Bayesian Scoring of Independence Constraints.
Jabbari, Fattaneh; Ramsey, Joseph; Spirtes, Peter; Cooper, Gregory.
Afiliação
  • Jabbari F; Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.
  • Ramsey J; Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Spirtes P; Department of Philosophy, Carnegie Mellon University, Pittsburgh, PA, USA.
  • Cooper G; Intelligent Systems Program, University of Pittsburgh, Pittsburgh, PA, USA.
Mach Learn Knowl Discov Databases ; 2017: 142-157, 2017 Sep.
Article em En | MEDLINE | ID: mdl-29520396
Discovering causal structure from observational data in the presence of latent variables remains an active research area. Constraint-based causal discovery algorithms are relatively efficient at discovering such causal models from data using independence tests. Typically, however, they derive and output only one such model. In contrast, Bayesian methods can generate and probabilistically score multiple models, outputting the most probable one; however, they are often computationally infeasible to apply when modeling latent variables. We introduce a hybrid method that derives a Bayesian probability that the set of independence tests associated with a given causal model are jointly correct. Using this constraint-based scoring method, we are able to score multiple causal models, which possibly contain latent variables, and output the most probable one. The structure-discovery performance of the proposed method is compared to an existing constraint-based method (RFCI) using data generated from several previously published Bayesian networks. The structural Hamming distances of the output models improved when using the proposed method compared to RFCI, especially for small sample sizes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Mach Learn Knowl Discov Databases Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Mach Learn Knowl Discov Databases Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Estados Unidos