Your browser doesn't support javascript.
loading
Warnings and caveats in brain controllability.
Tu, Chengyi; Rocha, Rodrigo P; Corbetta, Maurizio; Zampieri, Sandro; Zorzi, Marco; Suweis, S.
Afiliação
  • Tu C; Dipartimento di Fisica e Astronomia, 'G. Galilei' & INFN, Università di Padova, Padova, Italy; Padova Neuroscience Center, Università di Padova, Padova, Italy.
  • Rocha RP; Dipartimento di Fisica e Astronomia, 'G. Galilei' & INFN, Università di Padova, Padova, Italy; Padova Neuroscience Center, Università di Padova, Padova, Italy.
  • Corbetta M; Dipartimento di Neuroscienze, Università di Padova, Padova, Italy; Departments of Neurology, Radiology, Neuroscience, and Bioengineering, Washington University, School of Medicine, St. Louis, USA; Padova Neuroscience Center, Università di Padova, Padova, Italy.
  • Zampieri S; Dipartimento di Ingegneria dell'informazione, Università di Padova, Padova, Italy; Padova Neuroscience Center, Università di Padova, Padova, Italy.
  • Zorzi M; Dipartimento di Psicologia Generale, Università di Padova, Padova, Italy; Padova Neuroscience Center, Università di Padova, Padova, Italy; IRCCS San Camillo Hospital Foundation, Venice, Italy.
  • Suweis S; Dipartimento di Fisica e Astronomia, 'G. Galilei' & INFN, Università di Padova, Padova, Italy; Padova Neuroscience Center, Università di Padova, Padova, Italy. Electronic address: suweis@pd.infn.it.
Neuroimage ; 176: 83-91, 2018 08 01.
Article em En | MEDLINE | ID: mdl-29654874
A recent article by Gu et al. (Nat. Commun. 6, 2015) proposed to characterize brain networks, quantified using anatomical diffusion imaging, in terms of their "controllability", drawing on concepts and methods of control theory. They reported that brain activity is controllable from a single node, and that the topology of brain networks provides an explanation for the types of control roles that different regions play in the brain. In this work, we first briefly review the framework of control theory applied to complex networks. We then show contrasting results on brain controllability through the analysis of five different datasets and numerical simulations. We find that brain networks are not controllable (in a statistical significant way) by one single region. Additionally, we show that random null models, with no biological resemblance to brain network architecture, produce the same type of relationship observed by Gu et al. between the average/modal controllability and weighted degree. Finally, we find that resting state networks defined with fMRI cannot be attributed specific control roles. In summary, our study highlights some warning and caveats in the brain controllability framework.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Conectoma / Modelos Neurológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Itália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Encéfalo / Conectoma / Modelos Neurológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neuroimage Assunto da revista: DIAGNOSTICO POR IMAGEM Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Itália