Your browser doesn't support javascript.
loading
Pattern recognition analysis on long noncoding RNAs: a tool for prediction in plants.
Negri, Tatianne da Costa; Alves, Wonder Alexandre Luz; Bugatti, Pedro Henrique; Saito, Priscila Tiemi Maeda; Domingues, Douglas Silva; Paschoal, Alexandre Rossi.
Afiliação
  • Negri TDC; Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil and Informatics and Knowledge Management Graduate Program, Universidade Nove de Julho, São Paulo, Brazil.
  • Alves WAL; Informatics and Knowledge Management Graduate Program, Universidade Nove de Julho, São Paulo, Brazil.
  • Bugatti PH; Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil.
  • Saito PTM; Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil.
  • Domingues DS; Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil and Department of Botany, Institute of Biosciences, São Paulo State University, UNESP, Rio Claro, SP, Brazil.
  • Paschoal AR; Department of Computer Science, Bioinformatics Graduate Program (PPGBIOINFO), Federal University of Technology - Paraná, UTFPR, Campus Cornélio, Procópio, Brazil.
Brief Bioinform ; 20(2): 682-689, 2019 03 25.
Article em En | MEDLINE | ID: mdl-29697740
MOTIVATION: Long noncoding RNAs (lncRNAs) correspond to a eukaryotic noncoding RNA class that gained great attention in the past years as a higher layer of regulation for gene expression in cells. There is, however, a lack of specific computational approaches to reliably predict lncRNA in plants, which contrast the variety of prediction tools available for mammalian lncRNAs. This distinction is not that obvious, given that biological features and mechanisms generating lncRNAs in the cell are likely different between animals and plants. Considering this, we present a machine learning analysis and a classifier approach called RNAplonc (https://github.com/TatianneNegri/RNAplonc/) to identify lncRNAs in plants. RESULTS: Our feature selection analysis considered 5468 features, and it used only 16 features to robustly identify lncRNA with the REPTree algorithm. That was the base to create the model and train it with lncRNA and mRNA data from five plant species (thale cress, cucumber, soybean, poplar and Asian rice). After an extensive comparison with other tools largely used in plants (CPC, CPC2, CPAT and PLncPRO), we found that RNAplonc produced more reliable lncRNA predictions from plant transcripts with 87.5% of the best result in eight tests in eight species from the GreeNC database and four independent studies in monocotyledonous (Brachypodium) and eudicotyledonous (Populus and Gossypium) species.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plantas / RNA de Plantas / Biologia Computacional / RNA Longo não Codificante Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Plantas / RNA de Plantas / Biologia Computacional / RNA Longo não Codificante Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Brief Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil