Your browser doesn't support javascript.
loading
The global regulator of pathogenesis PnCon7 positively regulates Tox3 effector gene expression through direct interaction in the wheat pathogen Parastagonospora nodorum.
Lin, Shao-Yu; Chooi, Yit-Heng; Solomon, Peter S.
Afiliação
  • Lin SY; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.
  • Chooi YH; School of Molecular Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia.
  • Solomon PS; Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.
Mol Microbiol ; 2018 May 03.
Article em En | MEDLINE | ID: mdl-29722915
ABSTRACT
To investigate effector gene regulation in the wheat pathogenic fungus Parastagonospora nodorum, the promoter and expression of Tox3 was characterised through a series of complementary approaches. Promoter deletion and DNase I footprinting experiments identified a 25 bp region in the Tox3 promoter as being required for transcription. Subsequent yeast one-hybrid analysis using the DNA sequence as bait identified that interacting partner as the C2H2 zinc finger transcription factor PnCon7, a putative master regulator of pathogenesis. Silencing of PnCon7 resulted in the down-regulation of Tox3 demonstrating that the transcription factor has a positive regulatory role on gene expression. Analysis of Tox3 expression in the PnCon7 silenced strains revealed a strong correlation with PnCon7 transcript levels, supportive of a direct regulatory role. Subsequent pathogenicity assays using PnCon7-silenced isolates revealed that the transcription factor was required for Tox3-mediated disease. The expression of two other necrotrophic effectors (ToxA and Tox1) was also affected but in a non-dose dependent manner suggesting that the regulatory role of PnCon7 on these genes was indirect. Collectively, these data have advanced our fundamental understanding of the Con7 master regulator of pathogenesis by demonstrating its positive regulatory role on the Tox3 effector in P. nodorum through direct interaction.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies Idioma: En Revista: Mol Microbiol Assunto da revista: BIOLOGIA MOLECULAR / MICROBIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Etiology_studies / Prognostic_studies Idioma: En Revista: Mol Microbiol Assunto da revista: BIOLOGIA MOLECULAR / MICROBIOLOGIA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Austrália