Your browser doesn't support javascript.
loading
Identification of usual interstitial pneumonia pattern using RNA-Seq and machine learning: challenges and solutions.
Choi, Yoonha; Liu, Tiffany Ting; Pankratz, Daniel G; Colby, Thomas V; Barth, Neil M; Lynch, David A; Walsh, P Sean; Raghu, Ganesh; Kennedy, Giulia C; Huang, Jing.
Afiliação
  • Choi Y; Veracyte, Inc, 6000 Shoreline Court, Suite 300, South San Francisco, CA, 94080, USA.
  • Liu TT; Veracyte, Inc, 6000 Shoreline Court, Suite 300, South San Francisco, CA, 94080, USA.
  • Pankratz DG; Veracyte, Inc, 6000 Shoreline Court, Suite 300, South San Francisco, CA, 94080, USA.
  • Colby TV; Department of Laboratory Medicine and Pathology, Mayo Clinic, Scottsdale, AZ, USA.
  • Barth NM; Veracyte, Inc, 6000 Shoreline Court, Suite 300, South San Francisco, CA, 94080, USA.
  • Lynch DA; Department of Radiology, National Jewish Health, Denver, CO, USA.
  • Walsh PS; Veracyte, Inc, 6000 Shoreline Court, Suite 300, South San Francisco, CA, 94080, USA.
  • Raghu G; Department of Medicine and Laboratory Medicine, University of Washington Medical Center, Seattle, WA, USA.
  • Kennedy GC; Veracyte, Inc, 6000 Shoreline Court, Suite 300, South San Francisco, CA, 94080, USA.
  • Huang J; Veracyte, Inc, 6000 Shoreline Court, Suite 300, South San Francisco, CA, 94080, USA. jing@veracyte.com.
BMC Genomics ; 19(Suppl 2): 101, 2018 May 09.
Article em En | MEDLINE | ID: mdl-29764379
BACKGROUND: We developed a classifier using RNA sequencing data that identifies the usual interstitial pneumonia (UIP) pattern for the diagnosis of idiopathic pulmonary fibrosis. We addressed significant challenges, including limited sample size, biological and technical sample heterogeneity, and reagent and assay batch effects. RESULTS: We identified inter- and intra-patient heterogeneity, particularly within the non-UIP group. The models classified UIP on transbronchial biopsy samples with a receiver-operating characteristic area under the curve of ~ 0.9 in cross-validation. Using in silico mixed samples in training, we prospectively defined a decision boundary to optimize specificity at ≥85%. The penalized logistic regression model showed greater reproducibility across technical replicates and was chosen as the final model. The final model showed sensitivity of 70% and specificity of 88% in the test set. CONCLUSIONS: We demonstrated that the suggested methodologies appropriately addressed challenges of the sample size, disease heterogeneity and technical batch effects and developed a highly accurate and robust classifier leveraging RNA sequencing for the classification of UIP.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Sequência de RNA / Pneumonias Intersticiais Idiopáticas / Fibrose Pulmonar Idiopática Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Análise de Sequência de RNA / Pneumonias Intersticiais Idiopáticas / Fibrose Pulmonar Idiopática Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: BMC Genomics Assunto da revista: GENETICA Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos