Your browser doesn't support javascript.
loading
Prion gene paralogs are dispensable for early zebrafish development and have nonadditive roles in seizure susceptibility.
Leighton, Patricia L A; Kanyo, Richard; Neil, Gavin J; Pollock, Niall M; Allison, W Ted.
Afiliação
  • Leighton PLA; From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
  • Kanyo R; From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
  • Neil GJ; From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
  • Pollock NM; From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
  • Allison WT; From the Department of Biological Sciences and the Centre for Prion and Protein Folding Diseases, University of Alberta, Edmonton, Alberta T6G 2E9, Canada ted.allison@ualberta.ca.
J Biol Chem ; 293(32): 12576-12592, 2018 08 10.
Article em En | MEDLINE | ID: mdl-29903907
Normally folded prion protein (PrPC) and its functions in healthy brains remain underappreciated compared with the intense study of its misfolded forms ("prions," PrPSc) during the pathobiology of prion diseases. This impedes the development of therapeutic strategies in Alzheimer's and prion diseases. Disrupting the zebrafish homologs of PrPC has provided novel insights; however, mutagenesis of the zebrafish paralog prp2 did not recapitulate previous dramatic developmental phenotypes, suggesting redundancy with the prp1 paralog. Here, we generated zebrafish prp1 loss-of-function mutant alleles and dual prp1-/-;prp2-/- mutants. Zebrafish prp1-/- and dual prp1-/-;prp2-/- mutants resemble mammalian Prnp knockouts insofar as they lack overt phenotypes, which surprisingly contrasts with reports of severe developmental phenotypes when either prp1 or prp2 is knocked down acutely. Previous studies suggest that PrPC participates in neural cell development/adhesion, including in zebrafish where loss of prp2 affects adhesion and deposition patterns of lateral line neuromasts. In contrast with the expectation that prp1's functions would be redundant to prp2, they appear to have opposing functions in lateral line neurodevelopment. Similarly, loss of prp1 blunted the seizure susceptibility phenotypes observed in prp2 mutants, contrasting the expected exacerbation of phenotypes if these prion gene paralogs were serving redundant roles. In summary, prion mutant fish lack the overt phenotypes previously predicted, and instead they have subtle phenotypes similar to mammals. No evidence was found for functional redundancy in the zebrafish prion gene paralogs, and the phenotypes observed when each gene is disrupted individually are consistent with ancient functions of prion proteins in neurodevelopment and modulation of neural activity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Convulsões / Peixe-Zebra / Animais Geneticamente Modificados / Doenças Priônicas / Regulação da Expressão Gênica no Desenvolvimento / Neurogênese / Proteínas Priônicas Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Canadá

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Convulsões / Peixe-Zebra / Animais Geneticamente Modificados / Doenças Priônicas / Regulação da Expressão Gênica no Desenvolvimento / Neurogênese / Proteínas Priônicas Limite: Animals Idioma: En Revista: J Biol Chem Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Canadá