Your browser doesn't support javascript.
loading
The miR-590/Acvr2a/Terf1 Axis Regulates Telomere Elongation and Pluripotency of Mouse iPSCs.
Liu, Qidong; Wang, Guiying; Lyu, Yao; Bai, Mingliang; Jiapaer, Zeyidan; Jia, Wenwen; Han, Tong; Weng, Rong; Yang, Yiwei; Yu, Yangyang; Kang, Jiuhong.
Afiliação
  • Liu Q; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Wang G; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Lyu Y; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Bai M; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Jiapaer Z; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Jia W; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Han T; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Weng R; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Yang Y; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Yu Y; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
  • Kang J; Clinical and Translational Research Center of Shanghai First Maternity and Infant Health Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai 20009
Stem Cell Reports ; 11(1): 88-101, 2018 07 10.
Article em En | MEDLINE | ID: mdl-29910124
ABSTRACT
During reprogramming, telomere re-elongation is important for pluripotency acquisition and ensures the high quality of induced pluripotent stem cells (iPSCs), but the regulatory mechanism remains largely unknown. Our study showed that fully reprogrammed mature iPSCs or mouse embryonic stem cells expressed higher levels of miR-590-3p and miR-590-5p than pre-iPSCs. Ectopic expression of either miR-590-3p or miR-590-5p in pre-iPSCs improved telomere elongation and pluripotency. Activin receptor II A (Acvr2a) is the downstream target and mediates the function of miR-590. Downregulation of Acvr2a promoted telomere elongation and pluripotency. Overexpression of miR-590 or inhibition of ACTIVIN signaling increased telomeric repeat binding factor 1 (Terf1) expression. The p-SMAD2 showed increased binding to the Terf1 promoter in pre-iPSCs compared with mature iPSCs. Downregulation of Terf1 blocked miR-590- or shAcvr2a-mediated promotion of telomere elongation and pluripotency in pre-iPSCs. This study elucidated the role of the miR-590/Acvr2a/Terf1 signaling pathway in modulating telomere elongation and pluripotency in pre-iPSCs.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Telômero / Regulação da Expressão Gênica no Desenvolvimento / Células-Tronco Pluripotentes Induzidas / Homeostase do Telômero Limite: Animals Idioma: En Revista: Stem Cell Reports Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Telômero / Regulação da Expressão Gênica no Desenvolvimento / Células-Tronco Pluripotentes Induzidas / Homeostase do Telômero Limite: Animals Idioma: En Revista: Stem Cell Reports Ano de publicação: 2018 Tipo de documento: Article