Your browser doesn't support javascript.
loading
Learning atoms for materials discovery.
Zhou, Quan; Tang, Peizhe; Liu, Shenxiu; Pan, Jinbo; Yan, Qimin; Zhang, Shou-Cheng.
Afiliação
  • Zhou Q; Department of Physics, Stanford University, Stanford, CA 94305-4045.
  • Tang P; Department of Physics, Stanford University, Stanford, CA 94305-4045.
  • Liu S; Department of Physics, Stanford University, Stanford, CA 94305-4045.
  • Pan J; Department of Physics, Temple University, Philadelphia, PA 19122.
  • Yan Q; Department of Physics, Temple University, Philadelphia, PA 19122.
  • Zhang SC; Department of Physics, Stanford University, Stanford, CA 94305-4045; sczhang@stanford.edu.
Proc Natl Acad Sci U S A ; 115(28): E6411-E6417, 2018 07 10.
Article em En | MEDLINE | ID: mdl-29946023
Exciting advances have been made in artificial intelligence (AI) during recent decades. Among them, applications of machine learning (ML) and deep learning techniques brought human-competitive performances in various tasks of fields, including image recognition, speech recognition, and natural language understanding. Even in Go, the ancient game of profound complexity, the AI player has already beat human world champions convincingly with and without learning from the human. In this work, we show that our unsupervised machines (Atom2Vec) can learn the basic properties of atoms by themselves from the extensive database of known compounds and materials. These learned properties are represented in terms of high-dimensional vectors, and clustering of atoms in vector space classifies them into meaningful groups consistent with human knowledge. We use the atom vectors as basic input units for neural networks and other ML models designed and trained to predict materials properties, which demonstrate significant accuracy.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Proc Natl Acad Sci U S A Ano de publicação: 2018 Tipo de documento: Article