Your browser doesn't support javascript.
loading
Silicon nutrition lowers cadmium content of wheat cultivars by regulating transpiration rate and activity of antioxidant enzymes.
Naeem, Asif; Zia-Ur-Rehman, Muhammad; Akhtar, Tasneem; Zia, Munir Hussain; Aslam, Muhammad.
Afiliação
  • Naeem A; Institute of Soil and Environmental Sciences, University of Agriculture, 38040 Faisalabad, Pakistan; Nuclear Institute for Agriculture and Biology (NIAB), P. O. Box 128, Jhang Road, Faisalabad, Pakistan. Electronic address: scoutuaf@gmail.com.
  • Saifullah; Institute of Soil and Environmental Sciences, University of Agriculture, 38040 Faisalabad, Pakistan; Department of Environmental Health, College of Public Health, Imam Abdulrahman University, Dammam, Saudi Arabia.
  • Zia-Ur-Rehman M; Institute of Soil and Environmental Sciences, University of Agriculture, 38040 Faisalabad, Pakistan.
  • Akhtar T; Institute of Soil and Environmental Sciences, University of Agriculture, 38040 Faisalabad, Pakistan.
  • Zia MH; Research and Development Section, Fauji Fertilizer Company Limited, Rawalpindi, Pakistan.
  • Aslam M; Nuclear Institute for Agriculture and Biology (NIAB), P. O. Box 128, Jhang Road, Faisalabad, Pakistan.
Environ Pollut ; 242(Pt A): 126-135, 2018 Nov.
Article em En | MEDLINE | ID: mdl-29966836
ABSTRACT
Given that cadmium (Cd) uptake by plants is linked to transpiration rate and activity of antioxidant enzymes and further that silicon (Si) can regulate them, it was hypothesized that improved Si nutrition could reduce Cd concentration in plants. Thus, present study was carried out to elucidate the positive effect of Si nutrition on the growth, activities of antioxidant enzymes and tissue cadmium (Cd) concentration in Cd-tolerant (Iqbal-2000) and Cd-sensitive wheat (Triticum aestivum L.) cultivars. Fifteen days after seedling transplantation, 15 µM Cd stress alone and in combination with 0.6 mM Si was applied. Silicon application improved root and shoot dry matter of Cd-sensitive cultivar Sehar-2006 while the effect was non-significant in Cd-tolerant cultivar Iqbal-2000. Silicon-treated Cd-sensitive cultivar showed marked improvements in chlorophyll content and photosynthesis, while stomatal conductance and transpiration rate decreased by Si application. Silicon treatment enhanced the activities of enzymatic antioxidants including catalase, ascorbate peroxidase, guaiacol peroxidase and superoxide dismutase and the increase was higher for Cd-tolerant cultivar Iqbal-2000. Although Si nutrition depressed malondialdehyde (MDA) content in both Cd-stressed cultivars, the response was more evident in Cd-sensitive Sehar-2006. Lower lipid peroxidation was related to Si-induced increase in antioxidant activities only in Cd-sensitive cultivar. Silicon application decreased Cd accumulation in the roots and shoots of both the cultivars. The decrease in shoot Cd was associated with a decrease in Cd uptake by roots and Cd translocation from roots to shoots. Overall, it is concluded that Si suppressed Cd contents by decreasing transpiration rate in Cd-sensitive cultivar and by increasing antioxidant activity in Cd-tolerant cultivar.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Silício / Triticum / Cádmio Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2018 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Silício / Triticum / Cádmio Idioma: En Revista: Environ Pollut Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2018 Tipo de documento: Article