Your browser doesn't support javascript.
loading
Reprogramming human T cell function and specificity with non-viral genome targeting.
Roth, Theodore L; Puig-Saus, Cristina; Yu, Ruby; Shifrut, Eric; Carnevale, Julia; Li, P Jonathan; Hiatt, Joseph; Saco, Justin; Krystofinski, Paige; Li, Han; Tobin, Victoria; Nguyen, David N; Lee, Michael R; Putnam, Amy L; Ferris, Andrea L; Chen, Jeff W; Schickel, Jean-Nicolas; Pellerin, Laurence; Carmody, David; Alkorta-Aranburu, Gorka; Del Gaudio, Daniela; Matsumoto, Hiroyuki; Morell, Montse; Mao, Ying; Cho, Min; Quadros, Rolen M; Gurumurthy, Channabasavaiah B; Smith, Baz; Haugwitz, Michael; Hughes, Stephen H; Weissman, Jonathan S; Schumann, Kathrin; Esensten, Jonathan H; May, Andrew P; Ashworth, Alan; Kupfer, Gary M; Greeley, Siri Atma W; Bacchetta, Rosa; Meffre, Eric; Roncarolo, Maria Grazia; Romberg, Neil; Herold, Kevan C; Ribas, Antoni; Leonetti, Manuel D; Marson, Alexander.
Afiliação
  • Roth TL; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
  • Puig-Saus C; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
  • Yu R; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Shifrut E; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Carnevale J; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Li PJ; Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
  • Hiatt J; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Saco J; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Krystofinski P; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Li H; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Tobin V; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Nguyen DN; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Lee MR; UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
  • Putnam AL; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Ferris AL; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Chen JW; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Schickel JN; Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
  • Pellerin L; Biomedical Sciences Graduate Program, University of California, San Francisco, San Francisco, CA, USA.
  • Carmody D; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Alkorta-Aranburu G; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Del Gaudio D; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Matsumoto H; Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
  • Morell M; Department of Medicine, University of California at Los Angeles, Los Angeles, CA, USA.
  • Mao Y; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
  • Cho M; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
  • Quadros RM; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Gurumurthy CB; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Smith B; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Haugwitz M; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.
  • Hughes SH; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Weissman JS; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
  • Schumann K; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • Esensten JH; Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
  • May AP; HIV Dynamics and Replication Program, Vector Design and Replication Section, National Cancer Institute, Frederick, MD, USA.
  • Ashworth A; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
  • Kupfer GM; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
  • Greeley SAW; Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA, USA.
  • Bacchetta R; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
  • Meffre E; Section of Adult and Pediatric Endocrinology, Diabetes, and Metabolism, Departments of Medicine and Pediatrics, The University of Chicago, Chicago, IL, USA.
  • Roncarolo MG; Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
  • Romberg N; Department of Human Genetics, The University of Chicago, Chicago, IL, USA.
  • Herold KC; Takara Bio USA, Inc, Mountain View, CA, USA.
  • Ribas A; Takara Bio USA, Inc, Mountain View, CA, USA.
  • Leonetti MD; Takara Bio USA, Inc, Mountain View, CA, USA.
  • Marson A; Chan Zuckerberg Biohub, San Francisco, CA, USA.
Nature ; 559(7714): 405-409, 2018 07.
Article em En | MEDLINE | ID: mdl-29995861
ABSTRACT
Decades of work have aimed to genetically reprogram T cells for therapeutic purposes1,2 using recombinant viral vectors, which do not target transgenes to specific genomic sites3,4. The need for viral vectors has slowed down research and clinical use as their manufacturing and testing is lengthy and expensive. Genome editing brought the promise of specific and efficient insertion of large transgenes into target cells using homology-directed repair5,6. Here we developed a CRISPR-Cas9 genome-targeting system that does not require viral vectors, allowing rapid and efficient insertion of large DNA sequences (greater than one kilobase) at specific sites in the genomes of primary human T cells, while preserving cell viability and function. This permits individual or multiplexed modification of endogenous genes. First, we applied this strategy to correct a pathogenic IL2RA mutation in cells from patients with monogenic autoimmune disease, and demonstrate improved signalling function. Second, we replaced the endogenous T cell receptor (TCR) locus with a new TCR that redirected T cells to a cancer antigen. The resulting TCR-engineered T cells specifically recognized tumour antigens and mounted productive anti-tumour cell responses in vitro and in vivo. Together, these studies provide preclinical evidence that non-viral genome targeting can enable rapid and flexible experimental manipulation and therapeutic engineering of primary human immune cells.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Linfócitos T / Genoma Humano / Reprogramação Celular / Edição de Genes Limite: Animals / Humans / Male Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Linfócitos T / Genoma Humano / Reprogramação Celular / Edição de Genes Limite: Animals / Humans / Male Idioma: En Revista: Nature Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos