Your browser doesn't support javascript.
loading
Methods for automated genome-scale metabolic model reconstruction.
Faria, José P; Rocha, Miguel; Rocha, Isabel; Henry, Christopher S.
Afiliação
  • Faria JP; Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, U.S.A. jplfaria@anl.gov.
  • Rocha M; Centre of Biological Engineering, University of Minho, Braga, Portugal.
  • Rocha I; Centre of Biological Engineering, University of Minho, Braga, Portugal.
  • Henry CS; Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL, U.S.A.
Biochem Soc Trans ; 46(4): 931-936, 2018 08 20.
Article em En | MEDLINE | ID: mdl-30065105
In the era of next-generation sequencing and ubiquitous assembly and binning of metagenomes, new putative genome sequences are being produced from isolate and microbiome samples at ever-increasing rates. Genome-scale metabolic models have enormous utility for supporting the analysis and predictive characterization of these genomes based on sequence data. As a result, tools for rapid automated reconstruction of metabolic models are becoming critically important for supporting the analysis of new genome sequences. Many tools and algorithms have now emerged to support rapid model reconstruction and analysis. Here, we are comparing and contrasting the capabilities and output of a variety of these tools, including ModelSEED, Raven Toolbox, PathwayTools, SuBliMinal Toolbox and merlin.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Metagenoma / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Biochem Soc Trans Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Metagenoma / Modelos Biológicos Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Biochem Soc Trans Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Estados Unidos