Your browser doesn't support javascript.
loading
Oxygen-Enhanced and Dynamic Contrast-Enhanced Optoacoustic Tomography Provide Surrogate Biomarkers of Tumor Vascular Function, Hypoxia, and Necrosis.
Tomaszewski, Michal R; Gehrung, Marcel; Joseph, James; Quiros-Gonzalez, Isabel; Disselhorst, Jonathan A; Bohndiek, Sarah E.
Afiliação
  • Tomaszewski MR; Department of Physics, University of Cambridge, Cambridge, United Kingdom.
  • Gehrung M; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
  • Joseph J; Department of Physics, University of Cambridge, Cambridge, United Kingdom.
  • Quiros-Gonzalez I; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom.
  • Disselhorst JA; Werner Siemens Imaging Center, Preclinical Imaging and Radiopharmacy, University of Tuebingen, Tuebingen, Germany.
  • Bohndiek SE; Department of Physics, University of Cambridge, Cambridge, United Kingdom.
Cancer Res ; 78(20): 5980-5991, 2018 10 15.
Article em En | MEDLINE | ID: mdl-30115696
ABSTRACT
Measuring the functional status of tumor vasculature, including blood flow fluctuations and changes in oxygenation, is important in cancer staging and therapy monitoring. Current clinically approved imaging modalities suffer long procedure times and limited spatiotemporal resolution. Optoacoustic tomography (OT) is an emerging clinical imaging modality that may overcome these challenges. By acquiring data at multiple wavelengths, OT can interrogate hemoglobin concentration and oxygenation directly and resolve contributions from injected contrast agents. In this study, we tested whether two dynamic OT techniques, oxygen-enhanced (OE) and dynamic contrast-enhanced (DCE)-OT, could provide surrogate biomarkers of tumor vascular function, hypoxia, and necrosis. We found that vascular maturity led to changes in vascular function that affected tumor perfusion, modulating the DCE-OT signal. Perfusion in turn regulated oxygen availability, driving the OE-OT signal. In particular, we demonstrate for the first time a strong per-tumor and spatial correlation between imaging biomarkers derived from these in vivo techniques and tumor hypoxia quantified ex vivo Our findings indicate that OT may offer a significant advantage for localized imaging of tumor response to vascular-targeted therapies when compared with existing clinical DCE methods.

Significance:

Imaging biomarkers derived from optoacoustic tomography can be used as surrogate measures of tumor perfusion and hypoxia, potentially yielding rapid, multiparametric, and noninvasive cancer staging and therapeutic response monitoring in the clinic.Graphical Abstract http//cancerres.aacrjournals.org/content/canres/78/20/5980/F1.large.jpg Cancer Res; 78(20); 5980-91. ©2018 AACR.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxigênio / Meios de Contraste / Neoplasias Limite: Animals / Humans Idioma: En Revista: Cancer Res Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Oxigênio / Meios de Contraste / Neoplasias Limite: Animals / Humans Idioma: En Revista: Cancer Res Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Reino Unido